

地盤反力メカ	_	7	ζ,	1	4 (Г.)7	何	È	Ņ		1/	17
港研方式S型モデル ($p = k_s \cdot x \cdot$	<i>y</i> ⁰	.5)		水	平:	カŀ	I	•			•	
✓ 地盤反力係数k。は、荷重レベルに 依らず一定値をとり、地盤剛性と杭幅で決まる。													
杭の軸直角方向抵抗性は, 地盤反力係数k _s の設定が重要(1	2	3	4	5	6	7	8	9	10	11 12	2
➡ 杭頭水平載荷実験を実施.	E 1								車	荷	位谓	1	
ロードセル 🕶 鋼板杭(12本)	60r		-	•	•	•		0	3	也才	之血	0	
変位計 変位計 一 60mm	553mm	(♪す 両i	"み 面名	・ゲ- 子2(ーシ)点	;)	00000000					
00 00 00 00 00 00 00 00 00 00			ł	妙1	也盤	Ě		0000000					

から、比較的相及後、外力を推定できているこうたちれる。 ksを深度方向に一定と考えた場合(通常の港研方式)には、 外力の合力が載荷荷重を大きく上回る結果となった。

まとめ	17/17					
▶杭に作用する外カ分布の推定	中詰からの作用力					
✓ 港外側から杭に作用する外力分布を比較的 精度良く推定できたと考えられる.	地盤反力					
✓ 異なる条件での検討 ⇒外カ分布の一般化に取り組む(今後の予定) ^{側方土中応カ}	┍ ╡ ╡ ╡ ╡ ╡ ╡ ╡ ╡ ╡ ╡ ╡ ╡					
◆ 地盤反力メカニズムについての検討	 −₩-₽					
✓ 港研方式S型モデルの地盤反力係数k _s は、杭の最大曲げモーメント 発生深度l _{m,max} 以深で変化することがわかった。						
✓ 杭の変形モードに対応した地盤反力の評価方法を詳細に検討 (今後の予定)	する.					