ドローンを用いた消波工の点検技術

株式会社 不動テトラ

発表内容

- 1.はじめに(技術概要)
- 2.使用方法
- 3. 従来技術との比較
- 4.まとめ

1. はじめに (技術概要)

• 本技術は•••

従来方法で点検者が測量機器等を用いて行っていた 点検診断作業をドローン等による3次元測量から作成した 構造物の3次元データを活用して、より安全で効率的に 実現する技術

1. はじめに (技術概要)

- 従来測量方法の課題
 - 安全の確保が難しい場所での点検作業の発生
 - 現地での点検データ収集、およびデータ整理に多くの時間と人員が必要
- 本技術による課題の改善
 - 安全性
 - 安全な場所からの測量が可能
 - 作業性
 - ・ 必要最小限の人員のみで作業を完結
 - 短時間で施設全体の測量が可能
 - 変状を面的に把握が可能

1. はじめに (技術概要)

- 「港湾の施設の新しい点検技術」(国土交通省)の カタログに掲載(令和7年4月)
 - https://www.mlit.go.jp/kowan/kowan_tk5_000040.html

技術	i名	ドローンを	用いた消波コ	[の点検診	断技術			
1.	技術概要							
特徴			作業効率	270% (当技術/従来	:技術)		8h/日とし 15,000㎡	ラベット形式)の水上部 で試算 (内業+外業) /日
			経済性	27円/ml		算定条件:現地調査 (外業+内業)	重から劣化	度判定表作成までの費用
			(独自で設定した項目 安全性	(日) 安全の確保が難しい場所 (例えば上部パラペット式の防波堤では点検者の作業 エリアが限定され、かつ高所作業となる可能性あり) での測量作業が無い				
連絡先等			株式会社不動テトラ ブロック環境事業本部 技術部 竹内聖— Tel:03-5644-8585 E-mail:seiichi.takeuchi@fudotetra.co.jp					
技術紹介URL(パンフレット等)			https://www.fudotetra.co.jp/solution/ict/					
技術概要			本技術は、港湾構造物の点検診断業務を効率的に行うものである。従来の点検診断は陸上 および海上からの目視点検が標準であるが、例えば大規模な防波堤では点検者の負担が大 きく、また点検の安全性にも配慮が必要である。本技術は、ドローン等による3次元測量 から作成した構造物の3次元データ等のみで劣化度判定表を短時間で作成することで、点 検診断業務の負担軽減、安全性向上に寄与する。					
活用状況写真			-	0				
活用フロー			ドローン点検の	による	社実施範囲 ・3次元デー・水上部の (沈下量、i ・劣化度判定	- タの作成 変状計算 折損個数)		推持管理計画 修繕事業計画 内業
	当社の実施 範囲(該当	点検機械	Δ					
		操縦者	Δ					
		受託業務	Δ			0		
	0)	備考	外業、内業とも 2回目以降も同 △:当社以外へ	様の実施体制	であり、点		ま不可でる	ある。

対象施設等									
	対象施設	水域施設		外郭施設	係留施設		その他		
	N SKINGEX			0					
	構造形式			重力式・その他					
	点検部位・点検内容 消波ブロックの			の水上部の変状					
概算	費用	約40万円/15,000㎡(諸経費込み) (外業:25万円、内業:15万円)			現地測量のみ(フライトのみ)の 場合は、最大30,000m²/日まで 可能				
点検実績		港湾1件(国1件):四国地方整備局小松島港湾·空港整備事務所 1件							
現有台数		UAV: 2台 対空標識: 5台		基地住所	東京都中央	区、福岡県	福岡市		
追加	機能等の開発予定	なし							
特許	・NETIS、関連論文等	論文:昇悟志ら:3Dデータを活用した消波工の設計および施工の効率化・高度化検討,土 木学会論文集B3(海洋開発), Vol.74, No.2, p.l_1-p.l_6, 2018.							

●劣化度判定 一消波工の劣化度判定一

2. 1. 4 消波工

消波工については、陸上及び海上からの目視により、消波ブロックの移動、散乱、沈下及び 損傷、欠損等の変状について把握することを標準とする。

【解説】

消波工は、波浪やコンクリートの劣化等により変状が生じるので、陸上及び海上からの目視により、 消波工の移動、散乱、沈下及び損傷、欠損等を把握する。

消波工の不連続部や沈下により消波工断面が減少した箇所では、波浪が収斂することで、ケーソンの変状が生じやすいことに留意する。

消波工の点検状況を図2-2.4に示す。表2-2.4に消波工の劣化度の判定基準を示す。

点検単位長に亘り、消波工断面が減少してい る。

欠損や部分的な変状があるブロックが複数個 ある。

港湾の施設の点検診断ガイドライン(H26 国土交通省) 【第2部実施要領】

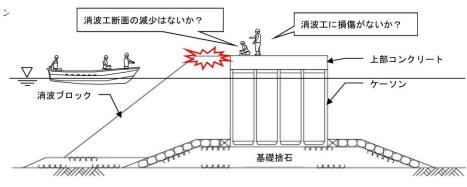


図 2-2.4 消波工の点検状況

表 2-2.4 消波工の劣化度の判定基準

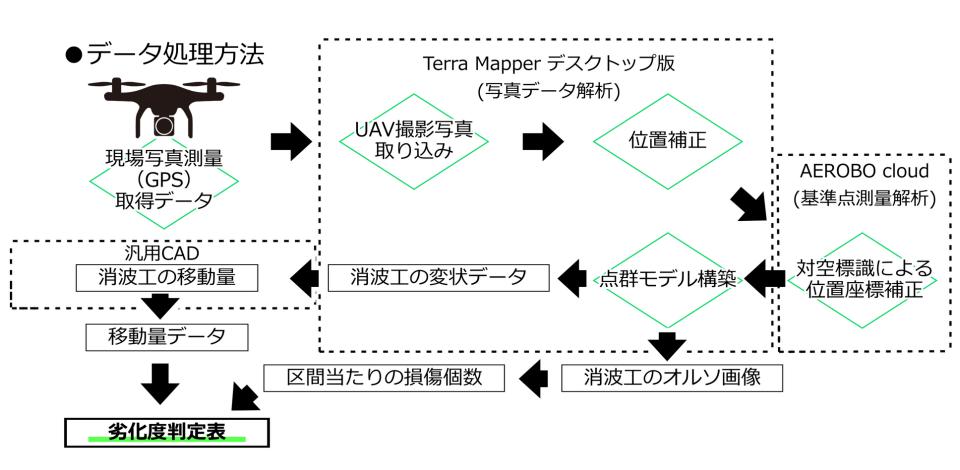
対象施設	点検診断項 目の分類	原検診断の項目		点 検 方 法	劣化度の判定基準		
	Ι類	消波工	移動、散乱、沈下	目視 ・消波エの天端、法面、法肩等の	a 口点検単位長に亘り、消波工断面がブロック1層分以上、減少している。		
ケ					b 口点検単位長に亘り、消波工断面が減少している。(ブロック1層未満)		
]				変形	c 口消波ブロックの一部が移動(散乱・沈下)している。		
シ				・消波ブロックの移動や散乱	d □変状なし。		
式			損傷、亀裂	目視	a ロ欠損しているブロックが1/4以上ある。		
防波					b 口aとcの中間的な変状がある。		
堤				・消波ブロックの損傷、亀裂・欠損ブロックの個数	c 口欠損や部分的な変状があるブロックが複数個ある。		
				2 18.00 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	d 口変状なし。		

茨城県鹿島港でのドローンを用いた調査事例

調査区間(2)

Coogle Earth

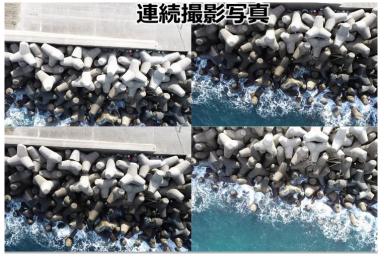
調査区間(1)



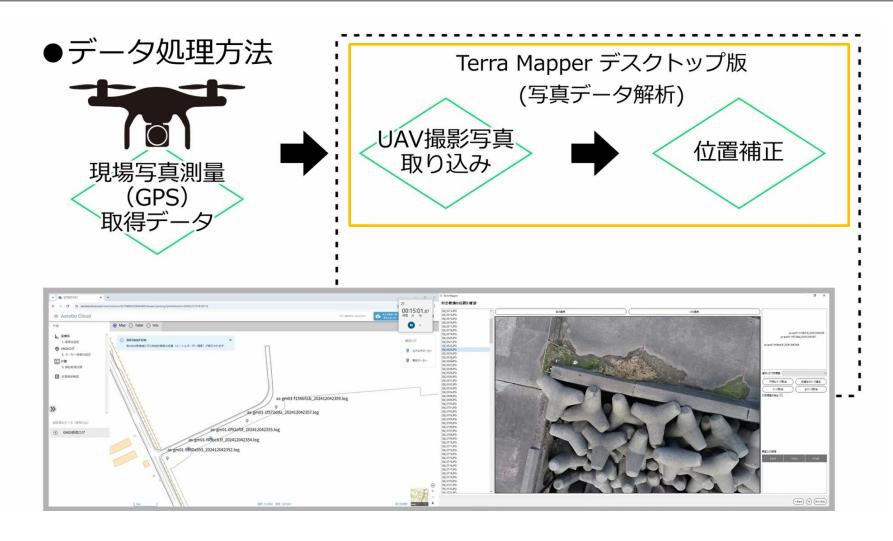
調査区間(1)

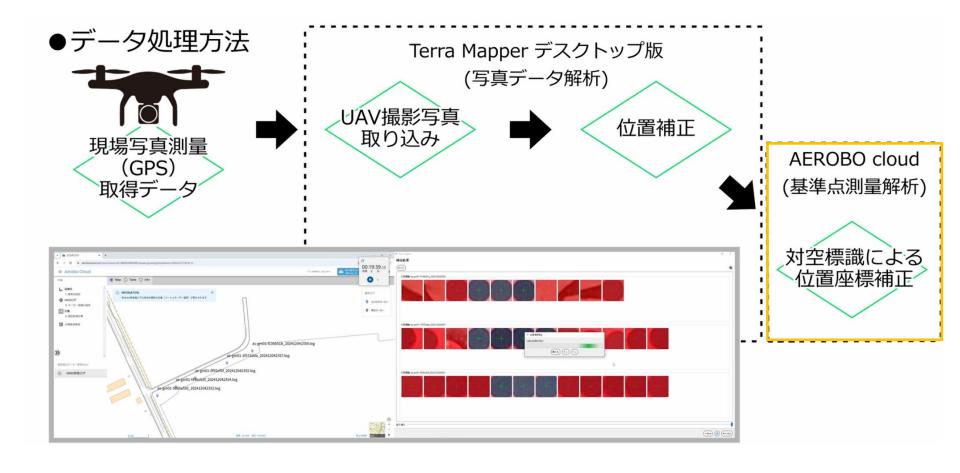
調査区間(2)

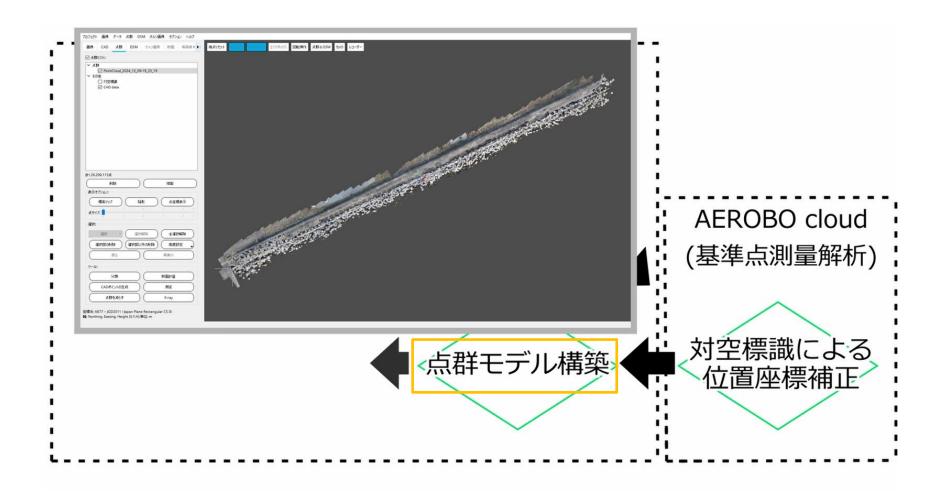
現場写真測量

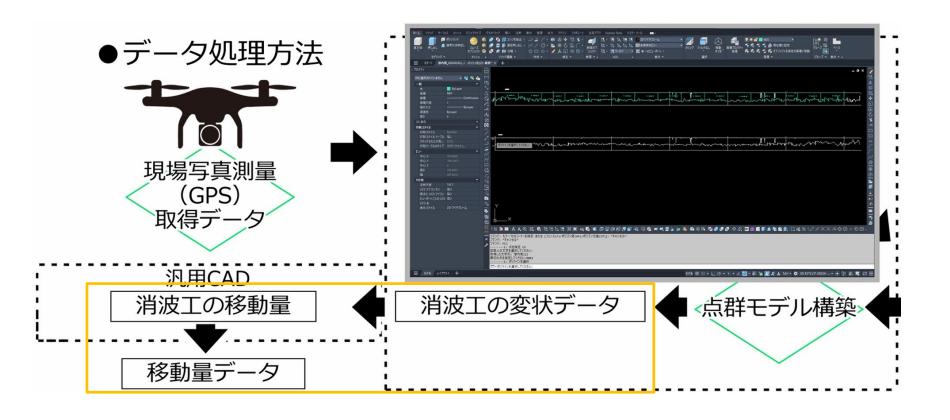


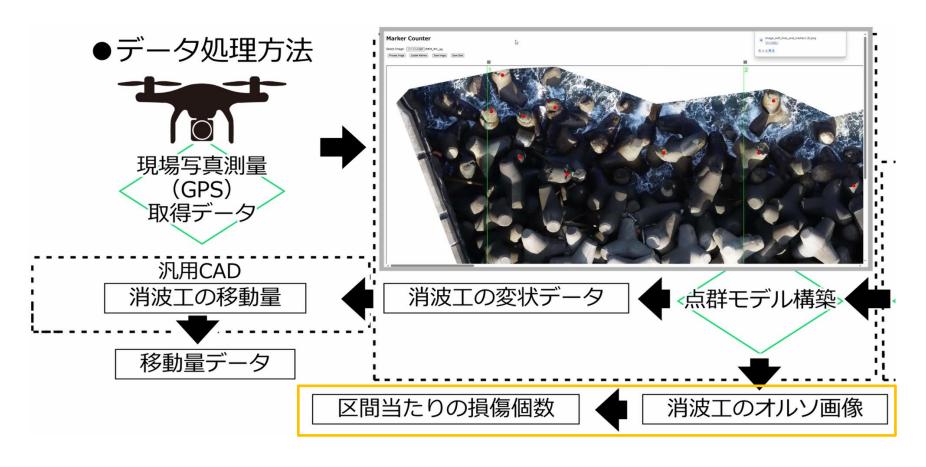
飛行計画の作成

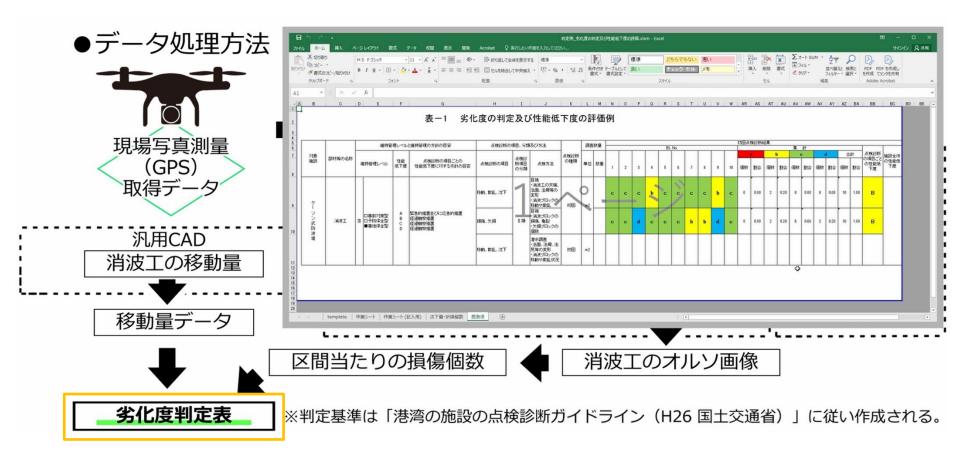

→対空標識の設置


UAV自動飛行・写真撮影

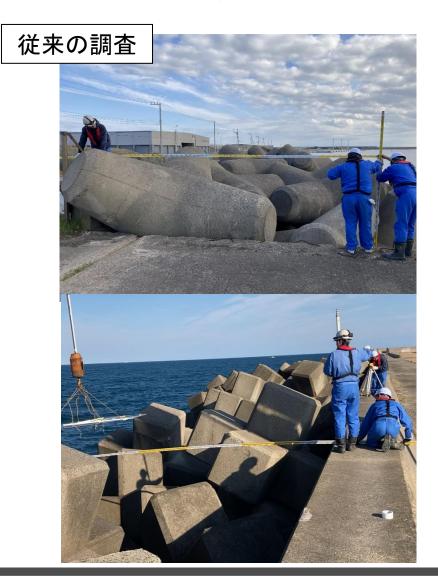

- ・UAVで取得したデータの3次元化から詳細な解析までを一貫して行える汎用解析ソフト
- ・ソフトウェア内への写真の取り込み


・測量時に使用した対空標識のGPSデータをもとに、基準点測量解析


・対空標識の位置情報を反映した3次元点群データを作成


- ・3次元点群データから消波工の変状を抽出、汎用CADソフトで移動量を計算、 区間当りの移動量データを出力
- -CADの専用言語を用いてプログラミング、自動化

- ・点群モデルから作成したオルソ画像を用いて、消波ブロックの損傷個数をカウント、 区間当りの損傷個数を出力
- ・効率的に行えるようプログラミング


・調査区間当りの消波工の移動量と損傷個数データから、劣化度判定表を自動的に作成

3. 従来技術との比較

茨城県鹿島港でのドローンを用いた調査と従来の調査

3. 従来技術との比較

	調査計画	現地調査 (外業)	劣化度判定表 作成	合計
本技術	1時間×1名 ^{飛行計画作成}	2時間×2名 対空標識設置 ドローン測量	6時間×1名 3D点群データ・ 解析含む	1名当り 8時間 調査費用40万円/500m
従来技術	5時間×1名 調査計画作成	4.5時間×3名 上部エ(上部パラペット方式)準備作業含む	15時間×1名 データ整理、 図面作成・解析	1名当り 21.5時間 調査費用50万円/500m
作業人数	±0名	-1名	士0名	1名当り 作業時間ー13.5時間 調査費用-10万円/500m
作業時間	一4時間	一2.5時間	一9時間	全行程当り 作業人数ー1名 作業時間ー15.5時間

調査対象延長 500m

4. まとめ

• 技術概要

一 従来方法で点検者が測量機器等を用いて行っていた点検 診断作業をドローンによる3次元測量から作成した構造物の 3次元データを活用してより安全で効率的に実現する技術

• 作業効率 安全性

- 点検診断の現地調査を最小限の人員で安全・効率的に実施
- 取得データから劣化度判定表作成までをシステム化し、 作業時間を短縮

利活用

- 取得した3次元データを用いた消波工の維持、補修管理への 活用
- 取得データ蓄積による被災傾向の把握、将来予測への活用

4. まとめ

利活用の事例

- 徳島小松島港での取組が四国地方整備局小松島港湾・空港整備事務所の 「あわみなと通信vol.49」で紹介され、維持管理において有効な手段であると 評価された。
- 本点検診断データ(3Dデータ)を活用した維持管理手法の取組が第7回イン フラメンテナンス大賞の優秀賞(技術開発部門)を受賞した。

設計・施工手法の確立に向けた取り組み

な消波ブロックを積み増す対策が行われているが、メンテナ ンス後においても消波工の性能を長期にわたり維持するため には、既設消波工の変状状態に応じて適切に積み増すブロッ クを配置し、既設プロックとの噛み合わせを確保することが 要求される。本手法は、それらの要求を満たすことを可能と した、ICT (VR/AR) 技術の活用による消波工の設計・施

ICT技術の活用により既設消波工の変状状態に応じて既設

ブロックとの噛み合わせを確保し適切に積み増すブロックを 配置することを可能としたこと、安全性を高めながら生産 性・効率性に寄与し、工期の短縮につながることが評価され

THE POST OF THE PROPERTY OF TH

本手法は、既設消波工を忠実に再現して積み増すブロック と既設プロックの噛み合わせを確保することを可能とした技 術であり、VR機能やゲームバッドを使用することで、実施 工で行われているクレーン操作の疑似操作によるブロックの 誘導・据付作業をシミュレーション上で雨現できる。また、 多方向からシミュレーション状況の確認もできるため、関係 者間で作業手順や施工方法の合意形成がスムーズに行える。 さらに、プロックの位置誘導システムにはAR機能を搭載し シミュレーションデータどおりに積み増すプロックを誘導す ることが可能である。

(上号をから) デ で丸/久保口 真 /三井 臓

この定びは、「種志賞」という大変名誉ある賞を頂き、光栄に存じます。 ま、光栄に存じます。 本取組は、にて技能を活用し、メンテノンス機会 開めに頂き、ロの進路を組合させることを可能とする数 帯逸な洋頂エメンチナンスの機計・約エデビです。 今後も、消滅工会の心港河道はの維持者引事等に高 載できるよう技術開発を並めていく所存です。

団体樹薫

不動テトラは、土木ま具、地路多業、プロックま業 各手助ける。土木糸のはネコンです。 当れは自のフクリンからある。私起手業、プロック事業をコアイレて、連1・海洋標土木手髪の東なる技術 RIFルでは10. 様々な社会資本構築に貢献し、災害に強い国土づく 9.や地域社会づくりなど、対たな時代の期待やニース

問い合わせ先

第18回横浜技調技術交流会

ドローンを用いた消波工の点検診断技術

ご清聴ありがとうございました