トリプルセリ矢、クォーターセリ矢について

~必要とされる企業を目指して~

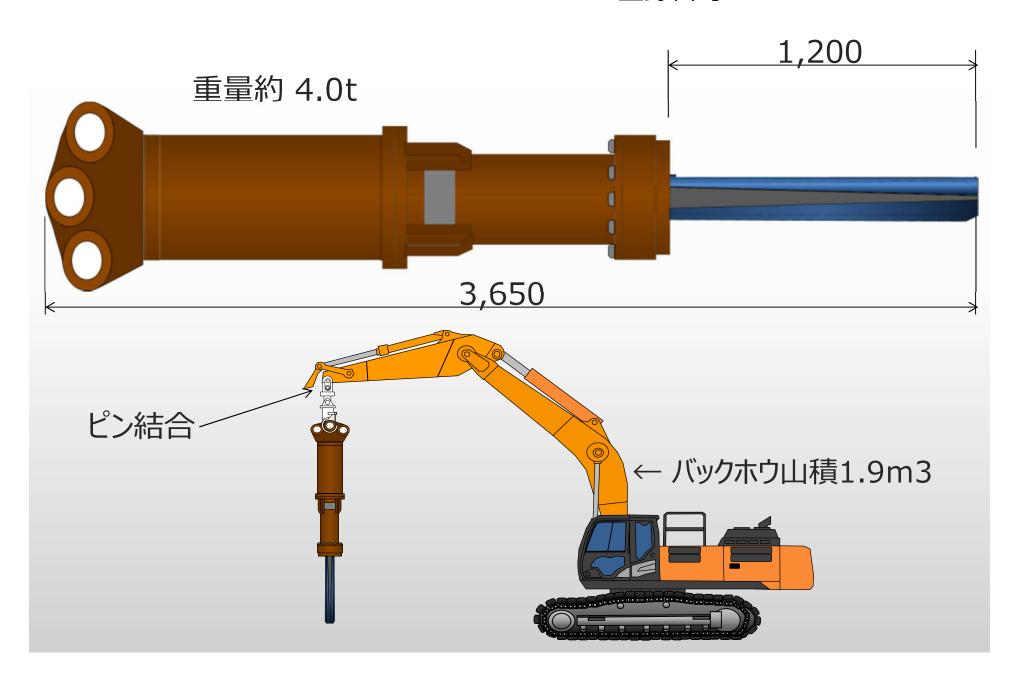
社 長 挨 拶

株式会社 神島組

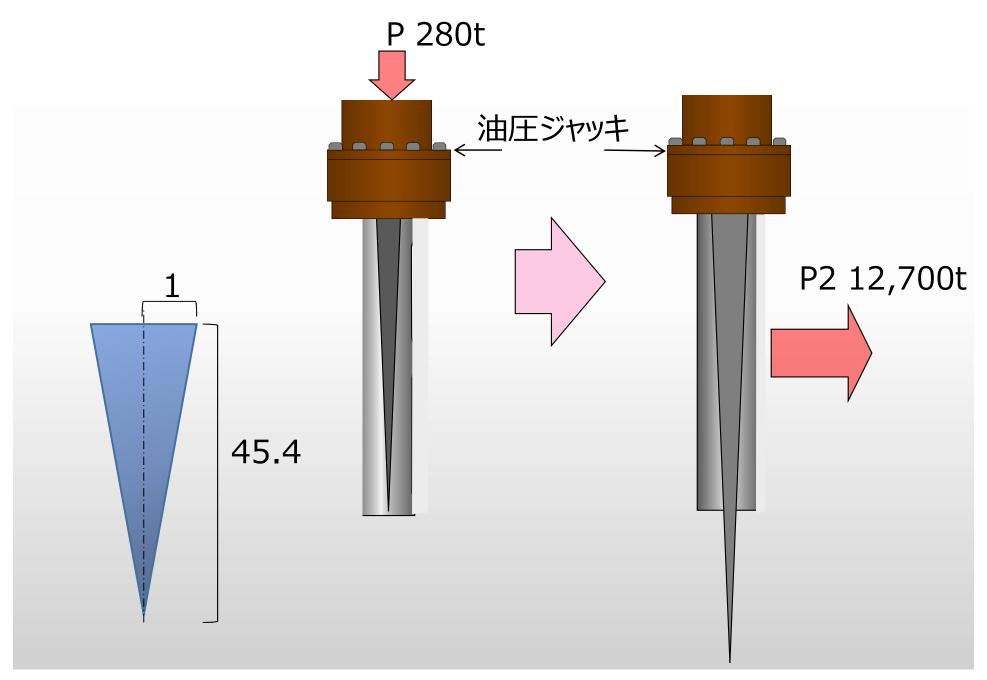
代表取締役社長 神田 和親

弊社は昭和15年の創業以来土木工事を主な事業とし「必要とされる企業」を目指し、様々な角度から経営革新に取り組み、第一回ひょうご経営革新大賞を受賞しました。その中心的な取り組みとして、自社所有機械を駆使し得意分野の「岩」に的を絞り、「環境・リサイクル・コスト削減」をキーワードとして、公害抑制型岩盤掘削システムを構築し、岩の処理・岩の利用からリサイクル、法面尾仕上げに至るまでの一連の工法を確立いたしました。

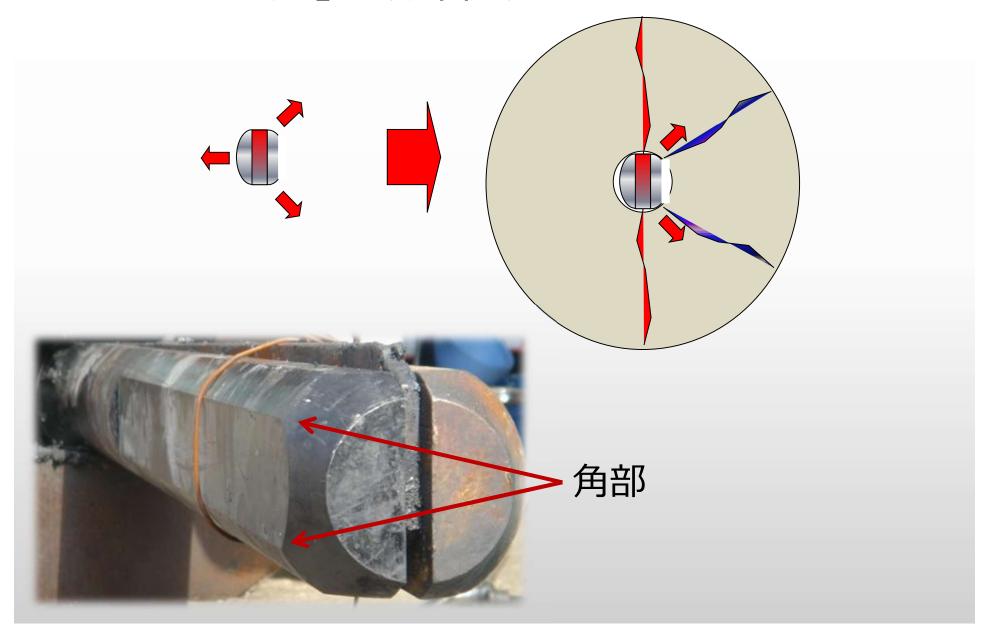
発想の転換を図り、画期的な機械や工法の発明を果たし、 64件の特許を取得いたしました。

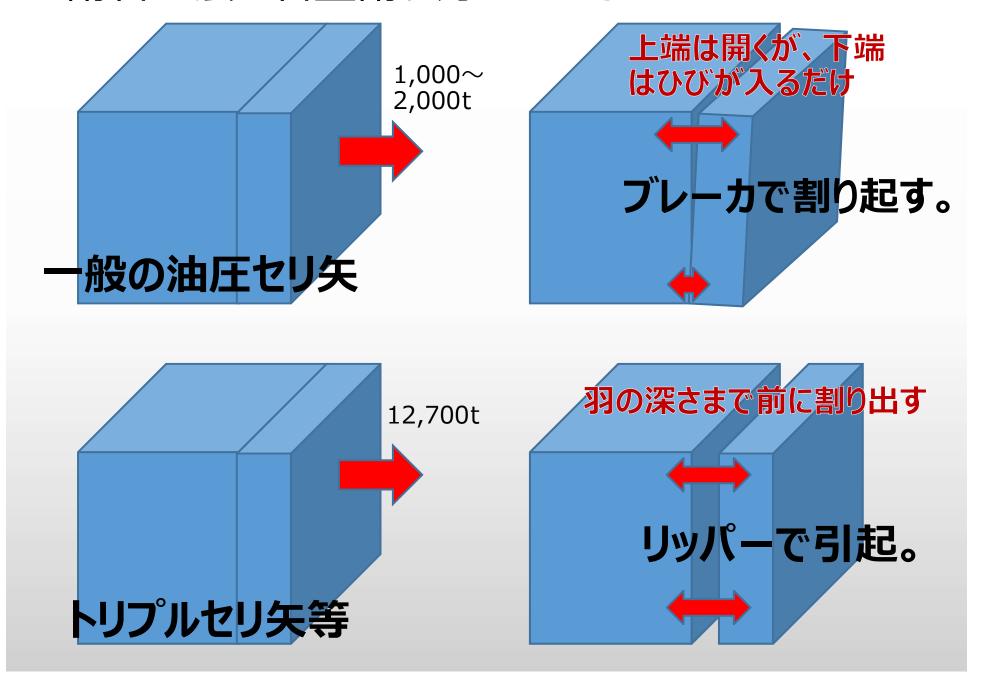

今後も皆様のご指導のもとさらなる研究を重ね環境改善並びにコスト削減等に貢献できればと願っています。

港湾・空港工事の実績

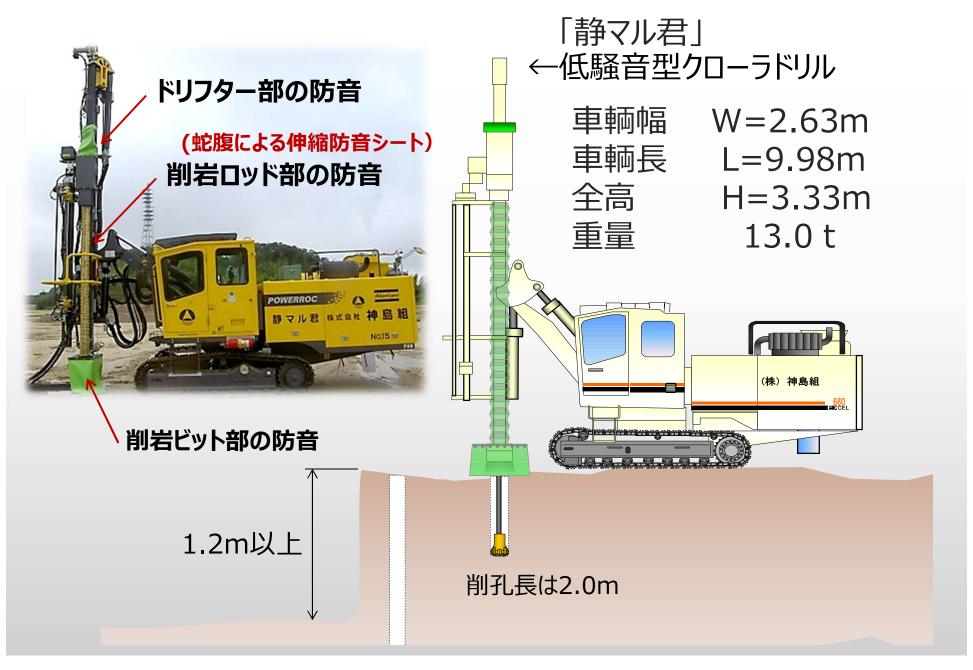

採用技術	工期	工事名	発注者	工事場所
クォーターセリ矢	2006	国道173号線平野山下線 5-2工区道路改築工事	兵庫県 宝塚土木事務所	兵庫県 川西市
クォーターセリ矢	2007	東京国際空港東側整備地区 舗装版等撤去工事	東京国際空港 ターミナル(株)	東京都 大田区
トリプルセリ矢	2009	神戸港ポートアイランド(第2期)地区 岸壁(-16m)舗装等工事	神戸市役所	兵庫県 神戸市
トリプルセリ矢	2014	長崎港(小ケ倉柳地区)岸壁 (-12m)(改良)工事	国土交通省長崎港湾·空 港整備事務所	長崎県 長崎市
トリプルセリ矢	2017	R29 名古屋港飛島ふ頭東岸壁 (-15m)改良工事(その2)	国土交通省 名古屋港湾事務所	愛知県 海部郡飛島村
トリプルセリ矢	2018	R30 度名古屋港飛島ふ頭東岸壁(- 15m)改良工事	国土交通省 名古屋港湾事務所	愛知県 海部郡飛島村
スリット君	2019	千代崎港港湾災害復旧工事(平成 30年国災第1号)(その2)	三重県 鈴鹿建設事務所	三重県 鈴鹿市
トリプルセリ矢	2018	地盤沈下対策河川緊急整備工事 合 併工事	愛知県 海部建設事務所	愛知県 海部郡飛島村
スリット君	2019	千代崎港港湾災害復旧工事(平成 30年国災第1号)(その3)	三重県 鈴鹿建設事務所	三重県 鈴鹿市
トリプルセリ矢	2020	緊急防災対策河川工事	愛知県 海部建設事務所	愛知県 海部郡飛島村
スリット君	2020	千代崎港港湾災害復旧工事(平成 30年国災第1号)(その3)	三重県 鈴鹿建設事務所	三重県 鈴鹿市
クォーターセリ矢	2021	R3美保飛行場エプロン改良等工事	中国地方整備局 境港湾·空港事務所	鳥取県 境港市
クォーターセリ矢	2021	R4美保飛行場エプロン改良等工事	中国地方整備局 境港湾·空港事務所	鳥取県 境港市
クォーターセリ矢	2022	R4美保飛行場エプロン改良等工事 (その2)	中国地方整備局 境港湾·空港事務所	鳥取県 境港市
クォーターセリ矢	2024	R6美保飛行場エプロン改良工事	中国地方整備局 境港湾·空港事務所	鳥取県 境港市

「トリプルセリ矢」とは


NETIS登録番号 KK-120019-VR


「トリプルセリ矢」の破砕力について

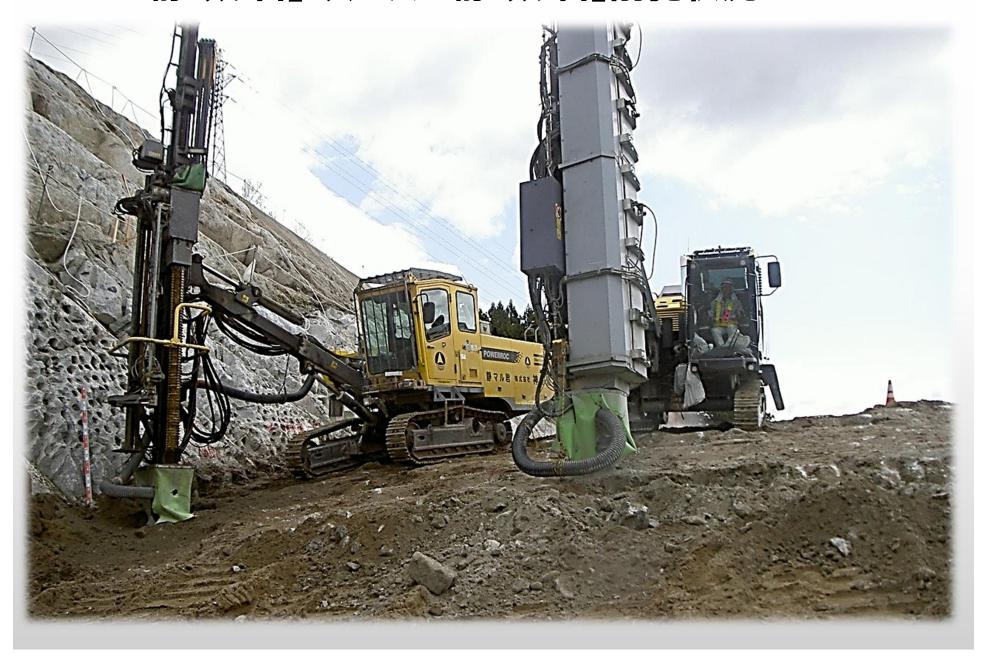
「トリプルセリ矢」の破砕状況



割岩工法の岩盤割れ方について

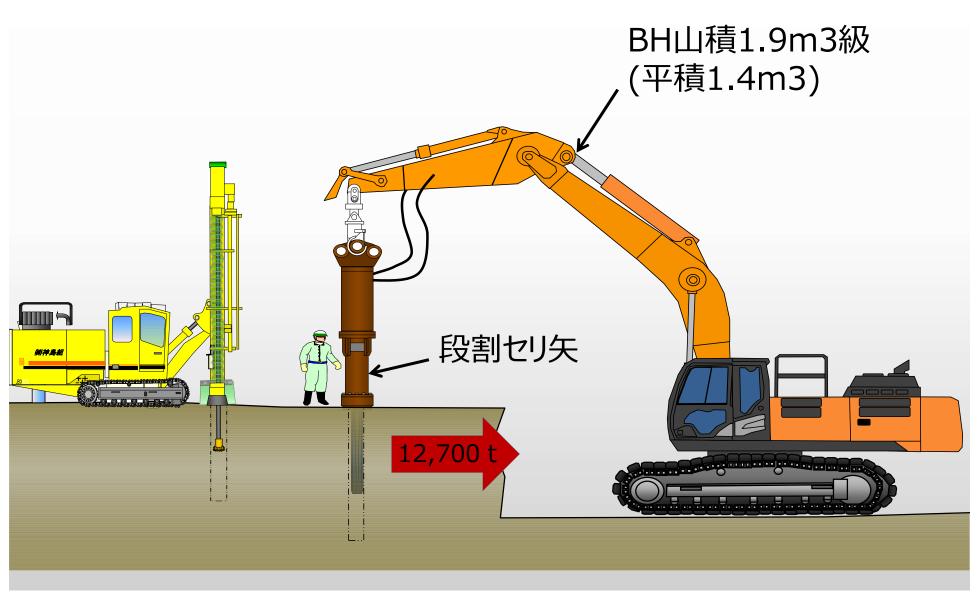
施工手順 1

「段割セリ矢」の削孔



破砕手順 2

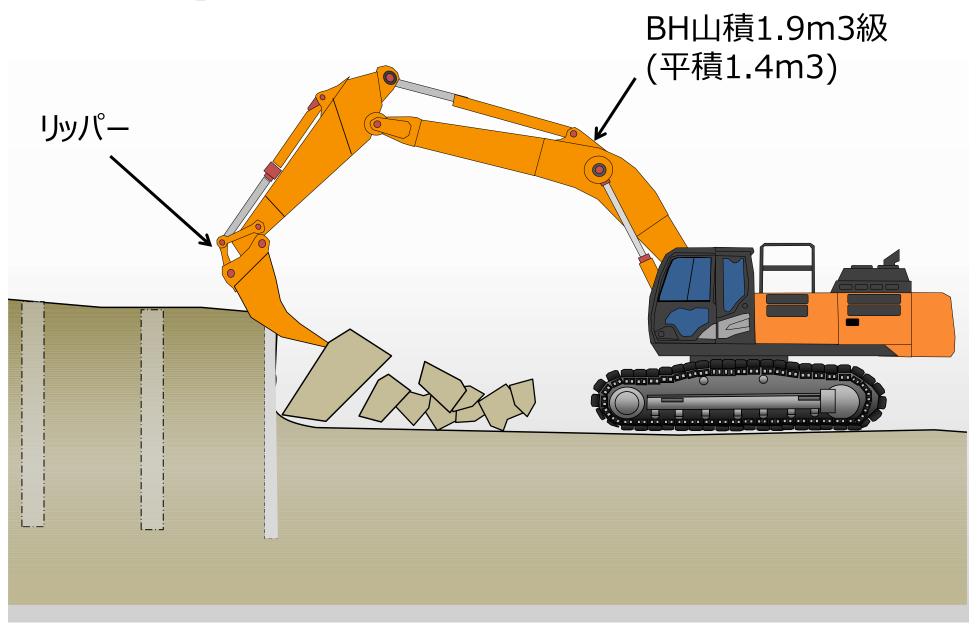
「段割セリ矢」の歩掛削孔ピッチについて


岩分類	地山	弾性波	速度	一軸圧縮強度		一軸圧縮強度		ジャッキの 押し圧	楔による 破砕力	引張破砕 される面 積(Max)	岩盤の引張り強さ	岩盤の引張り強さ	歩掛削孔@		
	(k	m/se	ec)	(kg	(kgf/cm2)		(Mpa)		(t)	(t)	(m2)	(kgf/cm2)	(Mpa)	(m)	
軟岩Ⅱ	1.21	~	1.90	841	~	1,200	82.5	~	117.7	280	12,700	21.17	60.0	5.90	1.18
中硬岩-①	1.91	~	2.40	1,201	~	1,379	117.8	~	135.2	280	12,700	18.42	69.00	7.65	1.15
中硬岩-②	2.41	~	2.90	1,380	~	1,560	135.3	~	153.0	280	12,700	16.28	78.00	7.65	1.10
硬岩 I -①	2.91	~	3.30	1,561	~	1,670	153.1	~	163.8	500	12,700	15.21	83.50	9.42	1.05
硬岩 I -2	3.31	~	3.80	1,671	~	1,809	163.9	~	177.4	500	12,700	14.04	90.50	10.42	1.03
硬岩 I -③	3.81	~	4.20	1,810	~	1,920	177.5	~	188.3	500	12,700	13.23	96.00	11.42	0.94
硬岩Ⅱ-①	4.21	~	4.60	1,921	~	2,029	188.4	~	199.0	500	12,700	12.52	101.50	9.95	0.81
硬岩Ⅱ-②	4.61	~	5.10	2,030	~	2,168	199.1	~	212.6	500	12,700	11.72	108.40	11.72	0.72
硬岩Ⅱ-③	5.11	~	5.50	2,169	~	2,278	212.7	~	223.4	280	12,700	11.15	113.90	12.26	0.66
硬岩Ⅱ-④	5.51	~	5.90	2,279	~	2,389	223.5	~	234.3	280	12,700	10.63	119.50	12.26	0.62
硬岩Ⅱ-⑤	5.91	~	6.30	2,390	~	2,500	234.4	~	245.2	280	12,700	10.16	125.00	12.26	0.58

「静マル君」「スーパー静マル君」削孔状況

破砕手順 2

「トリプルセリ矢」の破砕



トリプルセリ矢の破砕状況

破砕手順3

「段割セリ矢」の破砕

岩盤の引起し状況

セリ矢による岸壁の破砕状況 1

セリ矢による岸壁の破砕状況 2

旧岸壁の破砕

旧岸壁の破砕 2

旧岸壁の破砕 3

道路新設の岩盤破砕

ダム再生事業の副ダム堤体破砕

鉄筋コンクリートの破砕

鉄筋φ19mmの破断

「トリプルセリ矢」の騒音・振動について

発生源からの距離		ル君」	「トリプルセリ矢」 振動・騒音測定		
	騒音(dB)	振動(dB)	騒音(dB)	振動(dB)	
10.0m	83.0	50.0	62.0	22.0	
20.0m	77.0	39.0	_	_	

※ 自社確認値

「トリプルセリ矢」の日当たり施工量

岩分類	地山弾性波速度	一軸圧縮強度		1日当り 施工量	削孔@	削孔本数	削孔延長	施工日数		
- 33	km/sec	Мра	kg/cm2	m3	n×n	本	m	日/100m3		
Aグルー:	Aグループ									
軟岩Ⅱ	1.21~1.90	82.5~117.7	841~1,200	169	1.18	60	120.0	0.59		
中硬岩	1.91~2.40	117.8~135.2	1,201~1,379	160	1.15	63	126.0	0.63		
中联石	2.41~2.90	135.3~153.0	1,380~1,560	147	1.10	69	138.0	0.68		
	2.91~3.30	153.1~163.8	1,561~1,670	134	1.05	76	152.0	0.75		
硬岩 I	3.31~3.80	163.9~177.4	1,671~1,809	128	1.03	79	158.0	0.78		
	3.81~4.20	177.5~188.3	1,810~1,920	107	0.94	94	188.0	0.93		
	4.21~4.60	188.4~199.0	1,921~2,029	79	0.81	127	254.0	1.27		
	4.61~5.10	199.1~212.6	2,030~2,168	63	0.72	161	322.0	1.59		
硬岩Ⅱ	5.11~5.50	212.7~223.4	2,169~2,278	53	0.66	191	382.0	1.89		
	5.51~5.90	223.5~234.3	2,279~2,389	47	0.62	217	434.0	2.13		
	5.91~6.30	234.4~245.2	2,390~2,500	41	0.58	248	496.0	2.44		
Bグルー:	7 °									
軟岩Ⅱ	1.81~2.80	23.6~58.8	241~600	169	1.18	60	120.0	0.59		
中硬岩	2.81~3.45	58.9~76.5	601~780	160	1.15	63	126.0	0.63		
中联石	3.46~4.10	76.6~94.1	781~960	147	1.10	69	138.0	0.68		
硬岩 I	4.11	94.2	961	107	0.94	94	188.0	0.93		

従来工法との比較

「トリプルセリ矢」と大型ブレーカ掘削との比較)

項目	活用の効果	比較の根拠
経済性	低下	削孔〜破砕〜引起しの工程が
	(4.67%)	あるので経済性は低下。
工程	向上	大きな破砕力により日当たり
	(71.18%)	施工量がアップするため向上。
品質	向上	引張による破砕により高い
四 貝	1111	強度の硬岩Ⅱも対応可能。
安全性	向上	圧縮破壊に比べ、引張破砕は
女主江	16) —	比較的岩辺の飛散は少ない。
施工性	低下	大きな作業スペースが
ルビューエエ	124 1	必要なため低下。
環境	向上	振動・騒音・粉塵の発生が
垛	In) T	低減できるため向上。

トリプルセリ矢の施工条件比率について

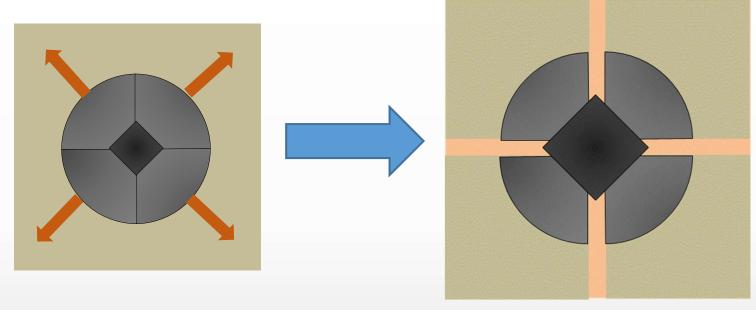
現場条件を考慮した作業効率により、標準単価に下記の条件の比率を乗じて施工単価を決定します。

比率 (係数)	施工条件
1.00	幅員=7m以上 延長=50m以上で クローラドリル(幅2.4m)が並列できること。
1.05	幅員=7m以上 延長=25m以上で クローラドリル(幅2.4m)が並列できること。
1.10	幅員=7m以上 延長=25m以下で クローラドリル(幅2.4m)が並列できること。
1.20	幅員=7m以下 延長=50m以上で クローラドリル(幅2.4m)が並列できること。
1.25	幅員=7m以下 延長=25m以上で クローラドリル(幅2.4m)が並列できること。
1.30	幅員=7m以下 延長=25m以下で クローラドリル(幅2.4m)が並列できること。
1.50	幅員=5m以下 延長=50m以上で クローラドリル(幅2.4m)が並列 または 入替えができること。
1.55	幅員=5m以下 延長=50m以下でクローラドリル(幅2.4m)が並列 または 入替えができること。
1.75	幅員=3m以上 延長=50m以上で クローラドリル(幅2.4m)が入替えができること。
1.85	幅員=3m以上 延長=50m以下でクローラドリル(幅2.4m)が入替えができること。

留意事項

- 1.現地調査で岩盤の種類、岩盤の一軸圧縮強度より割岩時の削孔ピッチを決定してください。 (岩盤の種類、硬さにより施工単価は変動するため上記の調査、ボーリングなどの資料を確認・考慮してください。)
- 2.破砕はベンチカットを標準としているため留意してください。 (施工ヤードの規模により施工単価は変動するので確認してください。)
- 3.バックホウ山積1.9(平積1.4)m3が搬入できる運経路、工事進入路、組立・解体できるヤードを確認してください。

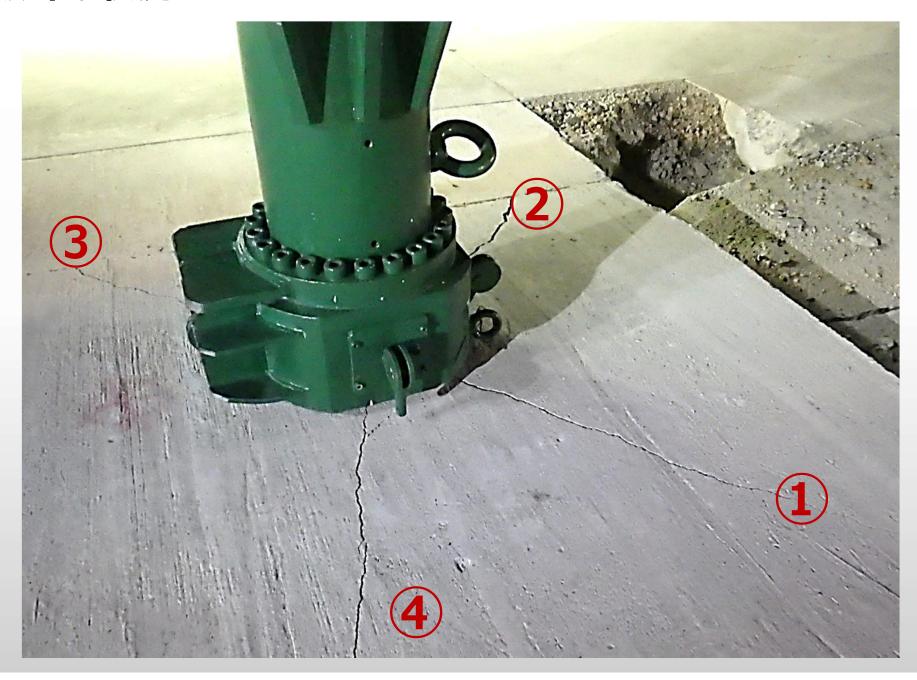
(狭小な施工ヤード場合でも、作業可能な場合もあるので問合せをしてください。)


- 4.鉄筋コンクリート破砕については、必ず問い合わせをしてください。
- 5.破砕岩の集積及び集積場所の確保・積込・運搬・搬出などの計画には留意してください。
- 6.岩盤の種類・硬さにより施工単価は変動するので、岩質・硬さの変化があった場合はその都度、 発注者立会いの上岩判定を行い設計変更の手続きをしてください。
- 7.ダンプトラックによる搬出サイズ以下や路体盛土・路床盛土として流用するために小割が必要な場合は、小割用の作業ヤードを計画してください。

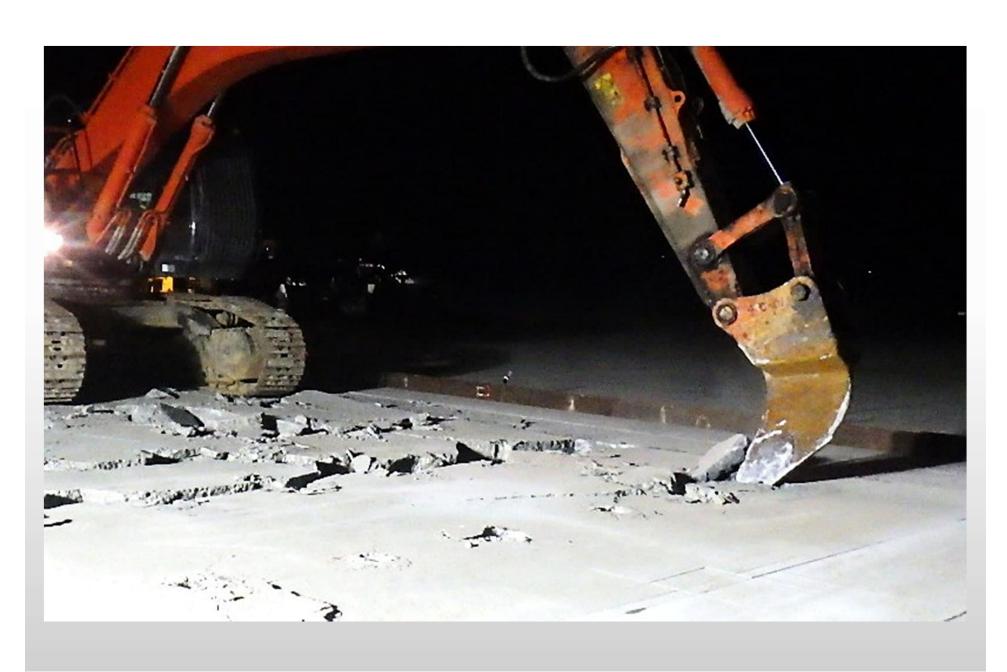
「クォーターセリ矢」について

NETIS登録番号 KK-040044-A

「クォーターセリ矢」の破砕状況

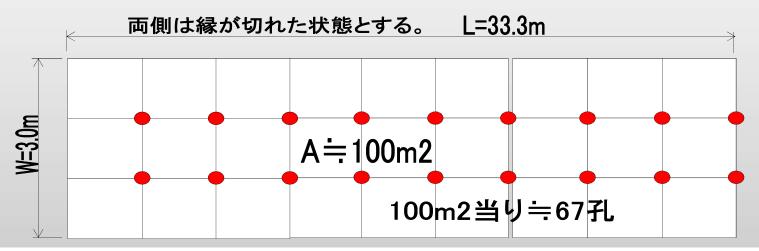


←「クォーターセリ矢」の先端


空港のエプロンの破砕

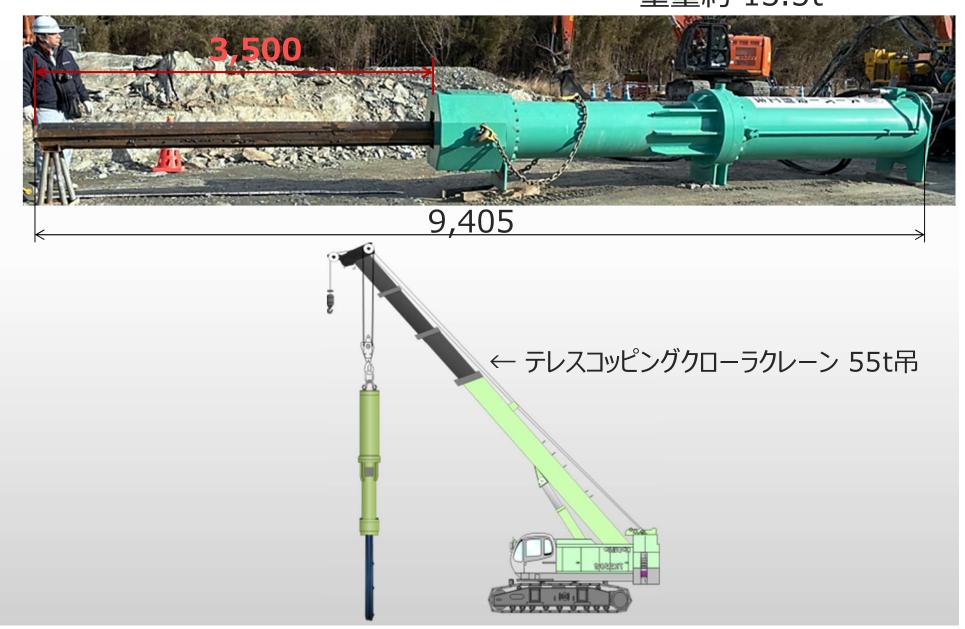


破砕の状況


引起しの状況

「クォーターセリ矢」の舗装版日当たり施工量

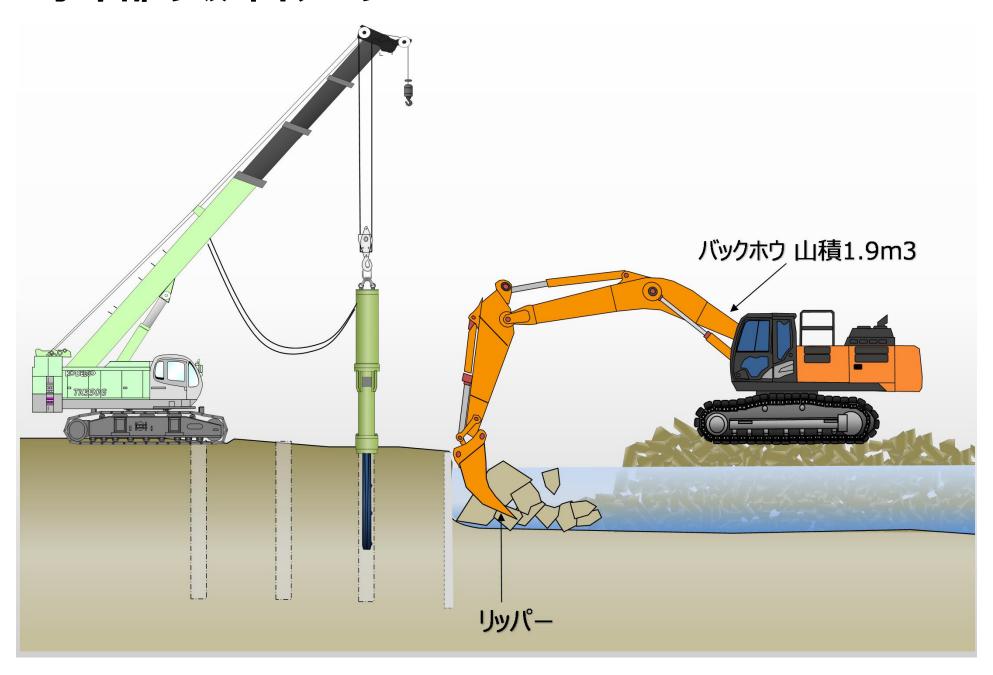
コンクリート 舗装版厚	削孔@	m2当りの削孔 延長	施工日数
(cm)	箇所/m2	m/m2	日/100m2
30	0.67	0.201	0.89
40	0.67	0.268	0.89
50	0.67	0.335	0.89
60	0.67	0.402	0.89
70	0.67	0.469	0.89
80	0.67	0.536	0.89


「クォーターセリ矢舗装版破砕仕様」単価一覧表

令和 7年度大阪府単価

コンクリート 舗装版厚	削孔@	m2当りの 削孔延長	施工日数	コンケリート版破砕単価	
(cm)	箇所/m2	m/m2	日/100m2	100m2当り	1.0m2当り
30	0.67	0.201	0.89	592,727	5,927
40	0.67	0.268	0.89	614,508	6,145
50	0.67	0.335	0.89	638,546	6,385
60	0.67	0.402	0.89	664,059	6,640
70	0.67	0.469	0.89	690,589	6,905
80	0.67	0.536	0.89	720,604	7,206

「スーパー段割工法」NETIS登録作業中


重量約 13.5t

「スーパー段割工法」破砕状況

水中部の破砕イメージ

神島組 公害抑制型岩盤掘削システムのラインナップ

「かち割る君工法」とは クローラドリル 削孔 ϕ 102mm ℓ =1.2m インプラントされた特殊鋼材 挿入 破砕 引起 小割

神島組 公害抑制型岩盤掘削システムのラインナップ

「パカット君工法」

NETIS KK-220045

特許 第 7087251号

神島組 公害抑制型岩盤掘削システムのラインナップ 「スーパーくさび君工法」

NETIS KK-220017

特許 第 6464396号

玄海施設設置土木準備工事で

神島組 公害抑制型岩盤掘削システムのラインナップ

「スリット君工法」

NETIS KK-100015

特許 第 4273243号

「スリット君工法」



破砕された コンクリートの引起し

クレーン付き台船での コンクリート撤去状況

ご清聴ありがとうございました。

株式会社 神島組

兵庫県 西宮市 甲風園3丁目9番5号

Tel: 0798-65-0121(代表)

Fax:0798-64-1838

担当:土木部 浦地 力

Mobile: 070-5266-3716

Mail: t.uraji@kamishimagumi.co.jp

(代表)mail: info@kamishimagumi.co.jp

HP: https//kamishimagumi.co.jp