D滑走路埋立/桟橋接続部護岸構造の最適化 水平変形を抑制する護岸構造と 消波型上部構造の設計

接続部護岸·桟橋工区 新原雄二 鹿島海外支店 加藤浩司 鹿島土木設計本部 砂坂善雄·木暮 健 鹿島技術研究所 池谷 毅·稲垣 聡 東亜建設工業 浅沼丈夫·田代聡一 埋立 工区 大和屋隆司

埋立/桟橋接続部

実施設計における 接続部構造の最適化

鋼管矢板井筒の動的解析 FLIPによる耐震設計

上部構造の最適化 - 消波構造への変更 -

頂版の設計

1.接続部護岸の最適化 基本設計断面

「常時変位及び地震時残留変位について、より一層の抑制の 可能性等構造系の最適化が必要」

<u>実施設計</u> 護岸変形を抑制等、護岸構造系全体について最適化

1.接続部護岸の最適化 実施設計断面

2. 接続部護岸の耐震設計

2. 接続部護岸の耐震設計

接続部護岸に要求される耐震性能

地震波		耐震性能	
レベル1 地震動	・補正最大基盤加速度 439Gal(八戸・大船 渡波)	構造物としては軽微な被 害程度とし、強度、安定 性を確保すること	
レベル2 地震動	 ・補正最大基盤加速度 486Gal(八戸・大船 渡波) ・シナリオ地震 	構造物としては著しい被 害を受けるが崩壊しない こと	

・井筒護岸の応答塑性率
 ・部材の損傷レベル
 ・鋼管矢板の支持力
 ・支承、伸縮装置の変位

2.接続部護岸の耐震設計 解析モデル 掲稿なしモデル

【照査項目】
 ・井筒護岸の応答塑性率
 ・部材の損傷レベル
 ・鋼管矢板の支持力
 ・支承、伸縮装置の変位

桟橋ありモデル

鋼管矢板井筒

2.接続部護岸の耐震設計 鋼管矢板井筒護岸のモデル化

2. 接続部護岸の耐震設計

護岸の変位波形と残留ひずみ・残留変形

残留せん断ひずみ分布と残留変形図

2.接続部護岸の耐震設計

護岸と桟橋の相対変位

	相対変位	桟橋なし モデル	桟橋あり モデル
八戸439Gal	伸張方向	7.6cm	6.1cm
	縮小方向	58.9cm	60.1cm
シナリオ地震	伸張方向	1.1cm	3.0cm
	縮小方向	197.1cm	180.0cm

2.接続部護岸の耐震設計 シナリオ地震に対する対応(ノックオフ機能の導入)

3.上部構造の最適化

3.上部構造の最適化 上部構造の基本設計からの変更

PC桁、スリット柱をプレキャスト化

3.上部構造の最適化

水理実験による消波効果の検証(1)

直立護岸とスリット式消波護岸の水理模型実験を実施
 波の状況と反射率、部材への作用波圧を計測

直立護岸の実験状況 (暴風時、H1/3=4.15m、HHWL AP+4.0m)

3.上部構造の最適化 水理実験による消波効果の検証(2) スリット形状(円柱、角柱)、開口率等を実験パラメータ 円柱、開口率33%が最適(反射率 0.4)

消波護岸の実験状況 (円柱スリット、開口率33%)

3.上部構造の最適化

消波構造の採用による効果

供用時の反射波低減 航行船舶への影響低減 周辺水域環境への影響低減

3.上部構造の最適化 上部構造の各部材の設計方針

3.上部構造の最適化

検討モデル

横断方向の部材設計 直角方向地震時

部材設計 耐久性照査 疲労照査__

頂版の構造概要

常時、地震時の断面力に対する強度・安全性 部材厚3.0mのRC構造 護岸法線方向の一体性の確保 全体挙動解析による断面力に対して 横断方向の鉄筋量を決定

・実施設計において接続部構造全体の最適化
 ・施工中に護岸変位が発生する
 護岸変位を考慮した施工管理計画
 動態観測による計測管理

