
第3編 施工

第1章 設計
(1)施工計画
1) 施工内容
2)覆砂厚
3) 地形
4)活用材性状 ·····
(2)施工工程
第 2 章 施工
(1)覆砂方法
1)覆砂船の移動軌跡1
2) 二重管トレミー工法
3)覆砂の施工管理
(2)覆砂施工に係る調査
1)覆砂前の海底地形測量
2)事前環境調査
3)覆砂施工中の水質監視調査2
4)施工後の海底地形測量
5)平成 17 年覆砂後の検証調査
(参考資料)

東京湾奥地区シーブループロジェクト総括資料は、序論、計画、施工、モニタリング、 評価・解析の5編から構成した。本編は第3編施工である。以下に各編の概要を示す。

第3編 施工

第1章 設計

(1)施工計画

1)施工内容

施工編における掲載内容を図 3-1 に示す。覆砂は、事前・事後の海底地形測量、 事前環境調査、水質監視調査、活用材の性状分析を伴い実施した。また、平成 17 年 に実施した小規模な覆砂について、海底地形の安定性および環境改善効果の検証調 査を実施し、平成 18 年の大規模な覆砂を施工する際の参考とした。平成 18 年の覆 砂施工後の海底地形測量以降については調査編に示す。覆砂の施工および施工に係 る調査項目を表 3-1 に示す。

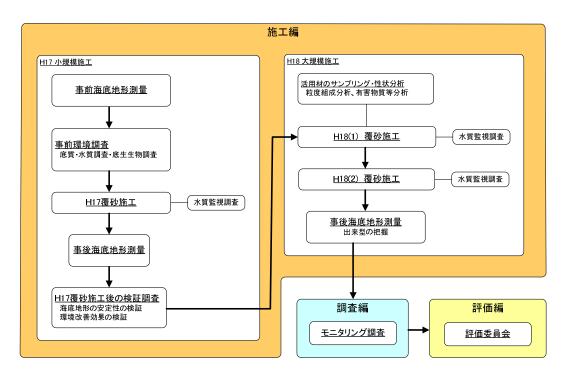


図 3-1 施工編における掲載内容

表 3-1 覆砂の施工および施工に係る調査項目

項目	作業内容	備考									
事前計画	施工場所の検討:スク	└───── リーニング、関係者調整(計画編〕)								
	 条件の把握:使用可能	な活用材の量、覆砂区域									
	計画立案:覆砂厚、施	†画立案:覆砂厚、施工方法、効果の予測									
活用材採取・分析	(浚渫工事)										
(浚渫土砂入手)	粒度分析	<活用材の物理特性>	土配の決定								
		土質性状の把握	覆砂使用土								
	化学分析	<活用材の化学特性>	×その他転用土								
		溶出試験、有害物質等分析									
活用材運搬	#	リノ瀬航路 千鳥沖施工位置への運	搬								
H17 覆砂工事	事前海底地形測量	<測量調査> 原地形の把握									
	事前環境調査	<環境調査> 覆砂施工前の環境	見の把握								
	(水質、底質、底生生										
	物)										
	施工	<試験施工> サイクル、覆砂地	5留、運転速度の把握								
		<本施工> 覆砂工事の本格が	五								
	水質監視調査	<環境調査> 施工中の水質監視	T.								
	検証調査	<環境調査> 環境改善と海底地	し形の安定性								
	事後海底地形測量	<測量調査> 覆砂出来型の把掘	<u> </u>								
H18 覆砂工事	施工	<試験施工> サイクル、覆砂地	器、運転速度の把握								
		<本施工> 覆砂工事の本格が	五								
	水質監視調査	<環境調査> 施工中の水質監視	₹								
	事後海底地形測量	<測量調査> 覆砂出来型の把掘	Ē								

本事業における覆砂による環境再生事業実施海域は、浦安市千鳥沖である(図 3-2)。 施工位置の検討はスクリーニングの手順(第 2 編 計画)で実施した。施工は中ノ瀬 航路の浚渫工事時期である平成 17 年、平成 18 年における活用材の発生と同時に実 施した。

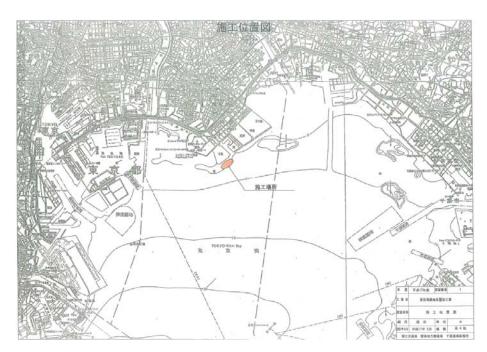
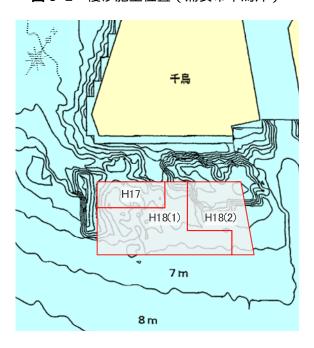
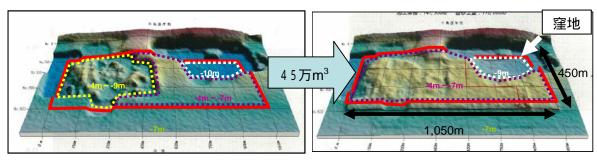


図 3-2 覆砂施工位置(浦安市千鳥沖)




図3-3 覆砂工事施工区域(H17施工区域、H18施工区域)

2)覆砂厚

中ノ瀬航路の浚渫土砂の発生量、浦安市千鳥沖において覆砂が可能な範囲を勘案し覆砂範囲は 450m×1050m の台形とした。覆砂厚は、活用材発生量と現場の受け入れ可能容量を勘案した上で 1m として計画した。覆砂厚の設定にあたっては、底引網漁船が覆砂前の海底に存在する廃棄物等に引っかからず安全に操業できる覆砂厚、また、地盤高を高く(浅く)するほど貧酸素状態の改善につながる可能性があるが、地形の維持を鑑みて、顕著な侵食が予想されない地盤高として 1mを設定した。

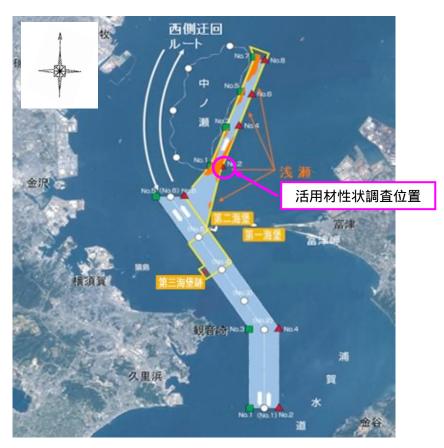
【施工前】

【平成18年度工事完了後】

水深は平均的な水深値を表す

図 3-4 覆砂施工前と 1m の覆砂施工後における海底状況イメージ

3)地形


施工区域内には窪地が含まれるが、窪地の埋め戻しをするには活用土砂の供給量が不足するため、窪地も周辺同様 1m の覆砂を行い窪地地形は残した。窪地における底質は、覆砂前の事前環境調査結果においては、「黒色の腐臭を伴う砂混りシルト(本資料表 3-10 環境評価1)」であり、覆砂による底質改良効果により硫化物発生の抑制、溶出削減効果の抑制が期待された。

4)活用材性状

覆砂に活用する土砂は、平成 17 年から 19 年の間の各 4 月から 8 月に中ノ瀬航路 から発生するものである。発生量は、平成 16 年度の見込みにおいて、平成 17 年約 10 万 m^3 、平成 18 年約 15 万 m^3 、平成 19 年約 15 万 m^3 の、合計 40 万 m^3 であった。活用材の性状は、中ノ瀬航路の浚渫場所海底にて柱状採泥した土質調査サンプルおよび、浚渫し運搬船上に揚収した活用材について分析した。

中ノ瀬航路における土質調査

中ノ瀬航路における土質調査位置を図 3-5、図 3-6 に示す。27 地点のサンプルについて粒度組成、内 4 地点のサンプルについて溶出試験、有害物質等分析試験 (溶出・含有)を実施した(実施時期:平成 18 年 4~5 月)。

原図出典:国土交通省関東地方整備局東京湾口航路事務所 HP http://www.pa.ktr.mlit.go.jp/wankou/kako/index.htm
図 3-5 中ノ瀬航路における活用材性状調査位置

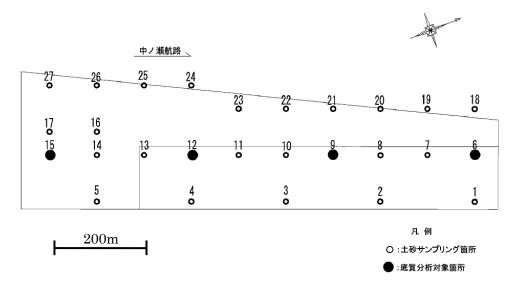


図 3-6 中ノ瀬航路における活用材性状調査位置

• 粒度組成分析結果

調査位置の土層における細粒分含有割合を図 3-7 に、粒度分析結果を表 3-2 に示した。細粒分は 27.3~49.4%と、全ての地点において細粒分は 50%以下であり、調査を行った位置は細粒分 50%以下の砂質土地盤であると判断した。

• 有害物質等分析結果

有害物質の溶出試験、含有量試験の結果、以下判定基準における基準値を超える ものは確認されなかった。表 3-4 に分析結果を示す。

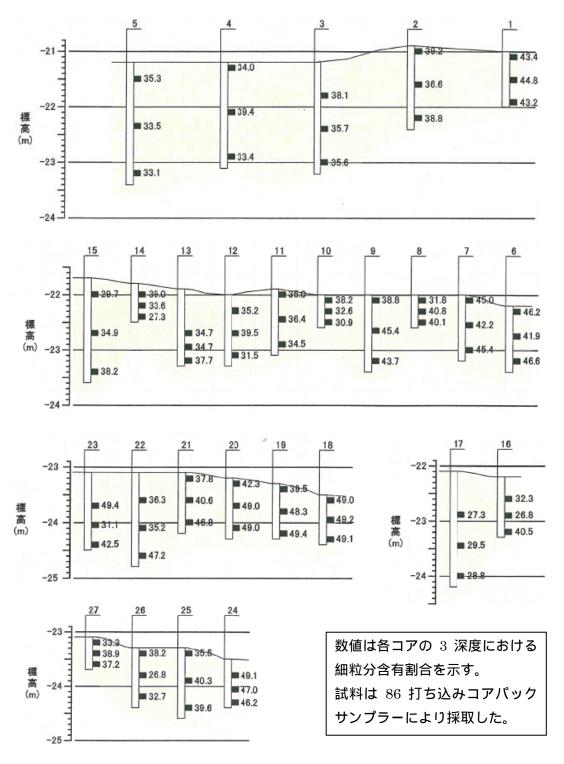


図 3-7 活用材性状調査位置の土層における細粒分含有割合

表 3-2 粒度組成分析結果

御木油と		Mo 1		· ·	No 9	-		No 9	
調査地点	-97.10	No.1	-97.00	-91.00	No.2	_90.00	-91.00	No.3	I_92.00
試験深度 m 粗粒分(75~0.075mm)%	-21.10	-21.50 55.2	-21.90 56.8	-21.00 60.8	_	_	_		
	56.6		**********	39.2	63.4	61.2	61.9	64.3	64.4
細粒分 (0.075mm以下) % 最大粒径 mm	2.00	44.8	43.2	2.00	36.6 2.00	38.8 2.00	38.1 4.75	35.7 4.75	35.6 4.75
	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)
土質分類(分類記号)	(SF)	No.4	(SP)	(SF)	No.5	(517)	(SF)	No.6	(517)
調査地点 、	21.20		-22.90	-01.50		1 22 20	00.00		T 22 20
試験深度 m 粗粒分(75~0.075mm)%	-21.30	-22.10 60.6		-21.50	-22.35		-22.30	-22.75	-23.20
	66.0		66.6	64.7	66.5	66.9	53.8	58.1	53.4
細粒分 (0.075mm以下) %	34.0	39.4	33.4	35.3	33.5	33.1	46.2	41.9	46.6
最大粒径 mm 土質分類(分類記号)	4.75	4.75	9.50	9.50	4.75	2.00	4.75	9.50	4.75
置查地点	(SF)	(SF) No.7	(SF)	(SF)	(SF) No.8	(SF)	(SF)	(SF) No.9	(SF)
5.6 MA 200 AV	-22 10	-22.55	-22.00	-22.10		-22 50	-22 10		-22.20
	-22.10			-22.10	-22.30 59.2	-22.50	-22.10	-22.65	
	55.0	57.8	54.6	68.2		************	61.2	54.6	56.3
細粒分 (0.075mm以下) % 最大粒径 mm	45.0	42.2	45.4	31.8	40.8	40.1	38.8	45.4	43.7 2.00
量 大 程 径 mm 土 質 分 類 (分類記号)	4.75 (SF)	4.75 (SF)	4.75 (SF)	2.00 (SF)	9.50 (SF)	4.75 (SF)	9.50 (SF)	4.75 (SF)	(SF)
調査地点	(91)	No.10	(or)	(ar)	No.11	(517)	(SF)	No.12	(517)
試験深度 m	-22.10		-22.50	-22.00	-22.45	-22.90	-22.30		-23.10
粗粒分 (75~0.075mm) %	61.8	67.4	69.1	65.0	63.6	65.5	64.8	60.5	68.5
細粒分 (0.075mm以下) %	38.2	32.6	30.9	35.0	36.4	34.5	35.2	39.5	31.5
最大粒径 mm	9.50	4.75	9.50	2.00	4.75	4.75	4.75	4.75	2.00
土質分類(分類記号)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)
調査地点	(01)	No.13	(04)	(01)	No.14	(04)	(01)	No.15	100 /
試験深度 m	-22.70		-23.20	-22.00		-22.40	-22.00		-23.40
粗粒分 (75~0.075mm) %	65.3	65.3	62.3	61.0	66.4	72.7	70.3	65.1	61.8
細粒分 (0.075mm以下) %	34.7	34.7	37.7	39.0	33.6	27.3	29.7	34.9	38.2
最大粒径 mm	2.00	4.75	9.50	9.50	4.75	9.50	4.75	4.75	4.75
土質分類(分類記号)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)
調査地点		No.16	1221		No.17	1==1		No.18	,,,,,,
試験深度 m	-22.60	-22.90	-23.20	-22.90	-23.45	-24.00	-23.60	-23.95	-24.30
粗粒分 (75~0.075mm) %	67.7	73.2	59.5	72.7	70.5	71.2	51.0	50.8	50.9
細粒分 (0.075mm以下) %	32.3	26.8	40.5	27.3	29.5	28.8	49.0	49.2	49.1
最大粒径 mm	9.50	4.75	9.50	4.75	9.50	4.75	9.50	9.50	4.75
土 質 分 類(分類記号)	(SF)	(SF)	(SP)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)
調査地点		No.19			No.20			No.21	
試験深度 m	-23.40	-23.80	-24.20	-23.30	-23.70	-24.10	-23.20	-23.60	-24.00
粗粒分 (75~0.075mm) %	60.5	51.7	50.6	57.7	51.0	51.0	62.2	59.4	53.2
継粒分 (0.075mm以下) %	39.5	48.3	49.4	42.3	49.0	49.0	37.8	40.6	46.8
最大粒径 mm	4.75	4.75	4.75	4.75	9.50	4.75	4.75	4.75	9.50
土 質 分 類 (分類記号)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)
調査地点		No.22			No.23			No.24	
試験深度 m	-23.60	-24.10			-24.05		-23.80	-24.05	
粗粒分 (75~0,075mm) %	63.7	64.8	52.8	50.6	68.9	57.5	50.9	53.0	53.8
細粒分 (0.075mm以下) %	36.3	35.2	47.2	49.4	31.1	42.5	49.1	47.0	46.2
最大粒径 mm	4.75	4.75	9.50	2.00	9.50	2.00	4.75	4.75	2.00
土 質 分 類 (分類記号)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)
調査地点		No.25			No.26			No.27	
試験深度 m	-23.40	-23.90	-24.40	-23.40	-23.80	-24.20	-23.20	-23.40	-23.60
粗粒分 (75~0.075mm) %	64.5	59.7	60.4	61.8	73.2	67.3	66.7	61.1	62.8
細粒分 (0.075mm以下) %	35.5	40.3	39.6	38.2	26.8	32.7	33.3	38.9	37.2
最大粒径 mm	4.75	4.75	4.75	4.75	4.75	4.75	9.50	9.50	4.75
土 質 分 類 (分類記号)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)	(SF)

表 3-3 有害物質等分析試験方法および判定基準

分析方法

溶出試験:

·海洋汚染及び海上災害の防止に関する法律施行令第5条第1項に規定する 埋立場所等に排出しようとする廃棄物に含まれる金属等の検定方法 (昭和48年

環境庁告示第14号・平成15年6月環境省告示第68号改正)

・廃棄物の処理及び清掃に関する法律施行第6条第1項第4号に規定する海洋 投入処分を行なうことができる産業廃棄物に含まれる袖分の検定方法(昭和51 年2月27日環境庁告示第3号)

·JIS K0312(1999)「工業用水・工場排水中のダイオキシン類及びコプラナーPC

Bの測定方法」準拠

含有量試験:

海洋汚染及び海上災害の防止に関する法律施行令第5条第1項に規定する 埋立場所等に排出しようとする廃棄物に含まれる金属等の検定方法 (昭和48年

環境庁告示第14号・平成15年6月環境省告示第68号改正) ・ 底質調査法(昭和63年9月8日 環水管127号)

・ダイオキシン類に係わる底質調査測定マニュアル(平成12年3月環境庁水質

保全局水質管理課)準拠

判定基準

・判定基準については、以下の法冷基準値を記載した

溶出試験:

・海洋汚染及び海上災害の防止に関する法律施行令第5条第1項に規定する 埋立場所等に排出しようとする金属等を含む廃棄物に係る判定基準を定める 省令の一部を改正する省令(平成15年度6月13日環境省令第14号)

・廃棄物の処理及び清掃に関する法律施行第6条第1項第4号で規定する油分 を含む産業廃棄物に係る判定基準を定める省令(昭和51年2月26日 総理府

令第5号)

含有量試験:

・海洋汚染及び海上災害の防止に関する法律施行令第5条第1項に規定する 埋立場所等に排出しようとする金属等を含む廃棄物に係る判定基準を定める 省令の一部を改正する省令(平成15年度6月13日環境省令第14号)

・底質の暫定除去基準についての別紙2PCBを含む底質の暫定除去基準(昭 和50年10月28日 環水管119号)

・東京港内における水銀を含む庇質の暫定除去基準値の決定について(昭和 52年3月31日 51港企事第29号の2)

・ダイオキシン類による大気の汚染、水質の汚染(水底の底質の汚染を含む。) 及び土壌の汚染に係る環境基準について(平成14年7月22日環境省告示第46

・毒性等量の算出については、以下のように行った。

定量下限未満の数値は0(セ゚ロ)として算出した。 溶出試験:

検出下限以上の数値はそのままの値を用い、検出下限未満のものは検出下限 含有量試験:

の1/2の値を用いて算出した。

・毒性等価数はWHO-TEF(1998)を用いた。

表 3-4 有害物質等分析結果

飲料名, 採取日、		No.6 表層		No.6		No.9 表居		No.9 -1m		No.13 表層		No.12 -1m		No.13 表居		No.13		定量下限値	基準値
分析項目				H18.4.4	*1					H18.4.10		H18.4.30 p	Η	18.4.26	Ħ	H18.4.26	74	L BX IB	
及び単位		9:40	牟	9;40	Æ	15:20	定	15:20	π	9:30	定	9:30	9	:50	连	9:50	ž		
≪溶出試験≫																			
アルキル水銀化合物	mg/L	不撿出	0	不検出	0	不検出	0	不検出	ō	不検出	0	不検出	万	検出	0	不被出	О	0.0005	不検出
水銀又はその化合物	mg/L	N.D.	0	N.D.	0	N.D.	0	N.D.	0	N.D.	O	N.D.) N	V.D.	О	N.D.	О	0.0005	0.005
カドミウム又はその化合物	mg/L	N.D.	0	N.D.	¢	N.D.	0	N.D.	0	N.D.	O	N.D.	N	N.D.	0	N.D.	О	0.01	0.1
鉛又はその化合物	mg/L	N.D.	0	N.D.	0	N.D.	Ó	N.D.	0	N.D.	0	N.D. C	N	V.D.	0	N.D.	0	0.01	0.1
有機燐化合物	mg/L	N.D.	0	N.D.	0	N.D.	0	N.D.	0	N.D.	0	N.D.	N	N.D.	0	N.D.	0	0.1	1
六価クロム化合物	mg/L	N.D.	0	N.D.	0	N.D.	0	N.D.	0	N.D.	0	N.D. C	N	١.D.	0	N.D.	0	0.05	0.5
ひ楽又はその化合物	mg/L	N.D.	0	N.D.	0	N.D.	0	N.D.	0	N.D.	0	N.D.) N	V.D.	0	N.D.	o	0.01	0.1
	mg/L	N.D.	0	N.D.	0	N.D.	0	N.D.	0	N.D.	0	N.D.	N	۷.D.	0	N.D.	0	0.1	1
A POLAR CLASSICS CO.	mg/L	N.D.	0	N.D.	0	N.D.	0	N.D.	0		0	N.D. C) N	V.D.	0	N.D.	o	0.0005	0.003
Acres	mg/L	N.D.	0	N.D.	0		0		0		0	N.D. IC	N	V.D.	0	N.D.	a	0.3	3
	mg/L	N.D.	0	N.D.	0	N.D.	0		o		0		-	_	o		d	0.5	5
	mg/L	0.58	0	0.8	0		0		O		O	0.63	-		0		d	0.08	15
100	mg/L	N.D.	0	N.D.	0	N.D.	0		0	N.D.		-	-	-			Ö	0.03	0.3
	mg/L	N.D.	0		0	N.D.	0		Ó		0		-		0	N.D.	a	0.01	0.1
Action to the control of the second	mg/L	N.D.	O	N.D.	0		0		0		0	-	+	_	0	N.D.	a	0.25	2.5
	mg/L	N.D.	0	N.D.	0	N.D.	0	N.D.	0		0	N.D.	-		0	N.D.	ŏ	0.23	2
1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	mg/L	N.D.	0	N.D.	0	N.D.	0	N.D.	0		0	N.D. C	+		0	N.D.	Ö	0.12	1.2
	mg/L	N.D.	0	N.D.	0	N.D.	0		0		0	_	+		0	N.D.	o	0.12	1.5
	mg/L	N.D.	-	N.D.	0		0		0		0		-	_	_	N.D.	ă	0.02	0.2
	mg/L	N.D.	-	21.5	0		0		o	N.D.	_		+	_	0	N.D.	o	0.002	0.02
12-7-1-1	mg/L	N.D.		N.D.	O		0		0	N.D.	-	-	+		0		o	0.002	0.04
	mg/L	N.D.	$\overline{}$	N.D.	o		0	N.D.	0		0	_	+	V.D.	0	N.D.	o	0.02	0.2
	mg/L	N.D.	o		0		0	_	0		0		+		0		ă	0.02	0.4
	mg/L	N.D.	o	N.D.	o		io	N.D.	0		io	N.D. 10	1	V.D.	0	N.D.	a	0.04	3
1 - 1 - 1 - 1 - 1 - 1	-	N.D.	0		_		0		0		-		+		-		-		
	mg/L				0	1112					0		-		0	N.D.	0	0.006	0.06
- L	mg/L	N.D.	0	N.D.	0		0		0		0		+		0		0	0.002	0.02
	mg/L	N.D.	0	N.D.	0		_		0		0		-		0		0	0.006	0.06
2122	mg/L	N.D.	0	N.D.	0		0		0		0	N.D. IC	-	V.D.	0		0	0.003	0.03
40 - 15 h	mg/L	N.D.	0		0		0	_	0	N.D.	-	N.D. 10	+	_		N.D.	0	0.02	0.2
	mg/L		0	N.D.	0		0		0	-	0		+		0		Q	0.01	0.1
24. (2)	mg/L		0		0		0		0		[O		-	V.D.		N.D.	C	0.01	0.1
	mg/L	N.D.	0	N.D.	0	N.D.	0	N.D.	0	N.D.	0	N.D.	-	V.D.	0	N.D.	Q	10	15
	e-TBQ/U	1.7	0	-	-	4.3	Ю		-	4.8	0	- 1-	-]	3.8	0	-		-	10
《含有試験》		0.555	le.				l e		-				J.				-		
- National Control of the Control of		0.096	_		_	0.056	-		-	_	-	0.065	+	-	_		Н	0.005	25
	mg/kg		0		0		0		_	N.D.	-		+	V.D.	0		0	1	10
	_	_	-		0		_	_	-			N.D. [0	1	_	_		О	- 5	40
	M-TED/6	_	_		_	2.6	_	-	-		_		1	_	0	_		-	150
始節級量(別しゃ(報量) 4)	%	4.1	įΟ	4.1	0	3.8	Į0	3.8	0	3.7	ĮΟ	3.6 [0	_	4	0	4.3	О	0.1	20
・昭和48年環告第14号に定める方法により分析を行った 術 考 ・N.D.とは定量下限値未満をいう																			

¹⁾ 廃棄物の処理及び清掃に関する法律施行令第6条第1項第4号に規定する油分を含む産業廃棄物に係る判定基準を 定める総理府令(昭和51年総理府令第5号)に定める項目について、その基準値を採用 2) 底質の暫定除去基準(昭和50年環水管第119号)に定める項目についての基準値を採用

む廃棄物に係る判定基準を定める省令の一部を改正する省令(平成15年度6月13日環境省令第14号)に定める基準値を採

⁴⁾ ダイオキシン類による大気の汚染、水質の汚染(水底の底質の汚染を含む。) 及び土壌の汚染に係る環境基準について(平成14年7月22日環境省告示第46号) に定める基準値を採用

活用材の性状

含水比(%)

平成17年7月28日、8月4日、8月10日に実際に覆砂に活用する浚渫土砂に ついて粒度組成分析を実施した。活用材の細粒分(シルト・粘土分)は32.4~42.8% であった。これらは、中ノ瀬航路の現地土質調査における細粒分27.3~49.4%とほ ぼ同様であった(図3-7)。

平成 17 年 7月28日 8月4日 シルト・粘土分(%) 42.8 32.4

8月10日 34.6 50%粒径(mm) 0.0850.10.1

79.7

61.9

44.6

表 3-5 覆砂活用材の粒度組成等

図 3-8 活用材となる中ノ瀬航路の浚渫土砂

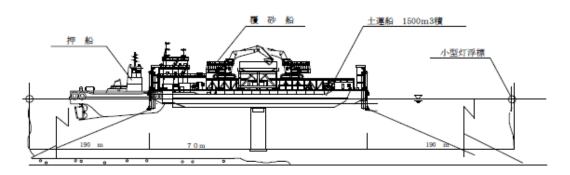
(2)施工工程

覆砂工事は、平成 17 年~平成 18 年に浚渫土砂の発生時期に合わせ実施した。覆砂施工および環境調査工程を表 3-6 に示す。覆砂施工前後において出来型を確認するための海底地形測量を実施した。覆砂施工前には事前環境調査を実施し、覆砂施工中は水質監視調査を実施した。覆砂は平成 17 年 7 月~8 月に 70,620 m³、平成 18 年 5~6 月に 212,800 m³、7 月~8 月に 162,000 m³を施工した。施工した土量の合計は約 45 万 m³であった。平成 17 年の小規模な施工後、環境改善と海底地形の安定性の面から検証調査を実施した。平成 18 年覆砂施工後には、事後海底地形測量を実施し、出来型を確認した。

表 3-6 覆砂施工および環境調査工程

15日/吐椒				平成	.17年			
項目/時期	7月	8月	9月	10月	11月	12月	1月	2月
事前海底地形測量	_							
事前環境調査 底質·水質調査·底生生物調査	_							
H17 覆砂施工 (70,620m³) 小規模	_							
水質監視調査 SS、その他	-							
H17覆砂施工後の検証調査 連続観測:流向、流速、濁度、波浪 海底地形の地形変化解析 環境調査:水質・底質・底生生物・溶出								_
事後海底地形測量								

項目/時期		平成18年								
以 日 / 时 期		4月	5月	6月	7月	8月				
活用材のサンプリング・性状分析										
粒度組成分析、有害物質等分析										
H18(1) 覆砂施工 (212,800m³)	H18(1) 覆砂施工 (212,800m³) 大規模									
H18(2) 覆砂施工 (162,000m³)) (NLIX					-				
水質監視調査						_				
SS、その他										
事後海底地形測量										

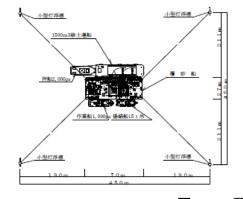

第2章 施工

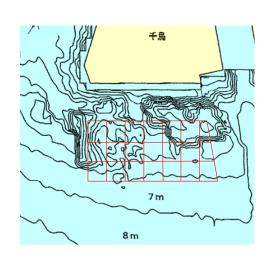
(1)覆砂方法

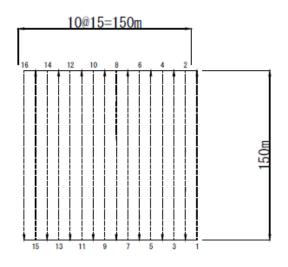
覆砂工法としては、施工時に発生する濁りによる周辺海域への影響に配慮し、濁りの拡散しにくい2重管トレミー工法を採用した。覆砂工事の施工手順を表 3-7 に、覆砂船の形状を図 3-9 に示す。覆砂の施工土量は、平成 17 年度に 70,620m³、平成 18 年度に 212,800m³、162,000 m³の合計約 45 万 m³であり、覆砂厚は平均 1m であった。

表 3-7 覆砂工事施工手順

- 1) 覆砂船のアンカーを打設し、施工開始位置に本船をセットした後、土運船を接舷。
- 2) 土運船を接舷後、覆砂船の2台のバックホウ(8.0m³)により浚渫土をホッパーに投入。
- 3) 事前深浅測量の土厚データを基に、投入サイクルと覆砂船の移動速度を設定し、土砂を 投入しながら覆砂船を自動操船し進行させる。覆砂管(二重トレミー管)吐出口は、海 底面の高さに応じて上下調整させる。
- 4) 施工管理モニターに表示されるオートレッドの測深値により、覆砂の天端高を確認。
- 5) 覆砂船は船位モニターにより船位置を管理。
- 6) 土砂落下防止板を使用し、海洋汚染を防止。
- 7) 夜間は投入場所にて停泊し、小型灯浮標により停泊区域を明示。




図 3-9 覆砂船の形状


1)覆砂船の移動軌跡

覆砂船が1回の転錨で移動できるよう 150m*150m 程度の施工ブロックに分割し て、ブロック毎に施工を順次実施した。ブロック内では、下図の施工順序に示すと おり、覆砂船は進行方向を覆砂しながら移動し、1 測線完了後、隣の測線に移動して 反対方向に移動し、これを繰り返しながら覆砂(覆砂厚 1.0m以上)を施工した。

また、1 ブロック完了後には出来形確認のため、作業継続中に深浅測量を行い操船 速度・覆砂幅の確認を実施した。ブロック境界まで完了すると隣のブロックへ転錨 し、覆砂を繰り返した。なお、1度に覆砂を行う覆砂幅は10mに設定した。

施工土量の管理は、覆砂を行いながら施工管理モニターに表示される自動測深装 置の測深値により、事前深浅測量の土厚データを基に出来型を随時確認することに より実施した。

赤線: 150m 四方の施工ブロックに区分した覆砂区域 150m 四方施工ブロックにおける覆砂軌跡 (東端のみ台形)

図 3-10 覆砂施工時における覆砂船の移動軌跡

2)二重管トレミー工法

従来の土砂投入における汚濁拡散防止対策を考慮した工法として、単管式のトレミー工法が採用されかなりの効果を発揮していたが、土砂に含まれるシルト系の微粒子に対しては、土砂着底後の巻き上がりなどによる海底部の汚濁拡散防止が懸念された。本事業で採用した二重管トレミー工法は、単管トレミー工法に比べ管内の容量が大きく、土砂投入時に内管と外管の水位差によって生じる循環流(上昇流)を利用して、浮遊しやすい微粒子を管内に滞留させ、汚濁拡散防止の抑制効果を向上させた工法である。

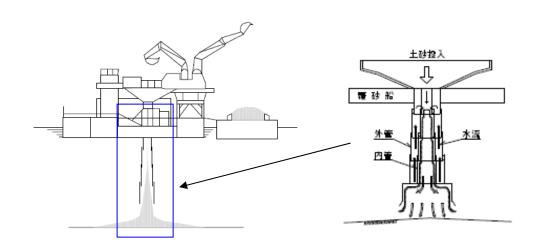


図 3-11 二重管トレミー工法の概要

図 3-12 二重管トレミー

3)覆砂の施工管理

覆砂船の試運転により施工管理に要する係数を把握することができる。計画の覆砂厚の施工を行う為の算定基本式を以下に示す。

バケット容量[m3] ×バケット係数×60[sec/min] ×歩留り =覆砂厚[m]

覆砂幅[m] ×サイクルタイム[sec] ×移動速度[m/min]

パケット容量= 9.5m3(JIS容量) ⇒8.0m3(平積み容量):パケット係数0.84

歩留り= 土質性状(Fc) により、係数が変動 (土運船上にて土質状態を確認)

覆砂幅= 土質性状(Fc) により、出来形変動 (覆砂幅10m設定)

サイクルタイム= パックホウの土砂投入サイクル:スクリーン網目寸法により変動:45~55sec/回

移動速度= 覆砂船の自動操船速度(Vmax=5.0m/min):通常3.0m/min以下で設定

覆砂船運転条件の仮設定と検証(施工初期段階での確認)

設定覆砂厚で出来形精度を確保するため、以下の項目について最適値を設定し、 施工管理に生かす情報とした。

(1) 覆砂材料(浚渫土) の土質性状:Fc値 ⇒覆砂幅·厚との相関

(2) トレミー管下端深度の設定 ⇒海底面での土砂の広がり:覆砂幅

(3) バケット容量×投入回数 ⇒投入土量の実績値

(4) 土砂投入のサイクルタイム ⇒作業能力(m3/hr)

(5) 覆砂船の自動操船速度 ⇒レーンの出来形(直線性の確保)

本覆砂工事における覆砂船・土運搬船の運転条件等を以下に示す。

-覆砂船運転条件共通-

①パケット容量 (JIS容量: 9.5m3⇒平積み容量: 8.0m3)

②バケット係数 (上記平積み換算係数:0.842)

③目標覆砂厚:50cm:0.5m

④歩留り (0.5m⇒0.7m:0.720)

⑤1レーン走行時の覆砂幅出来形推定値(幅:10m)

- 1. バックホウの土砂投入サイクルタイム:35sec
- 2. 覆砂船運転速度:3.92m/sec
- (1) バックホウ揚土能力 (9.5m3積⇒平積8.0m3)

 $Q = (3,600 \times q \times f \times E) \div Cm1 \quad (m3/h)$

 $= (3,600\times9,5\times1,0\times1,0\times0,65) \div 35$

= 635m3/h

Q2=635×2×(35÷40)÷1.13=983m3/h·2台

(2)バージ1隻あたり揚土時間の算定

 $H1 = (B \times 0.8) \div Q2 + 1/4 \div 2$

 $= (1,300 \times 0.8) \div 983 \text{m} 3/\text{h} + 0.125$

=1.183h

(3) 覆砂船転錨時間の算定

 $H2 = (1,300 \times 0.8) \div V \times (h3 \times 4)$

V:覆砂区域1区画(施工プロック)の覆砂土量

: 150m×150m×0.5×1.4 (70cm/50cm) =15,750m3

 $= (1,300\times0.8) \div 15,750\times (0.5\times4)$

=0.132h

(4) バージ1 隻あたり覆砂時間の合計値

H3=H1+H2 = 1.183+0.132 = 1.315h

(5) 覆砂できる土運船隻数の算定 (隻/1日:8時間運転)

N=8.0÷1.315 =6.08隻/日

(出典:平成17年度東京湾奥地区覆砂工事施工計画書)

(6) 1日あたり (運転:8時間) 覆砂可能土量 V1=1,300×0.8×6.08=6,323m3

(2)覆砂施工に係る調査

施工に係る調査として、事前環境調査(底質、底生生物、水質) 覆砂前の海底地 形測量(事前測量) 覆砂施工中の水質監視調査、覆砂後の海底地形調査(事後測量) を実施した。

***	, o Mexicin
調査項目	目的
覆砂前の海底地形測量(事前測量)	原地形の把握
事前環境調査	覆砂施工の事前に海底の土質・生物・水質の状態を把握
(底質、底生生物、水質)	
覆砂施工中の水質監視調査	覆砂施工に伴う濁りの発生を監視
覆砂後の海底地形調査(事後測量)	出来型の確認
H17 覆砂施工後の検証調査	環境改善と海底地形の安定性の検証

表 3-8 調查項目と目的

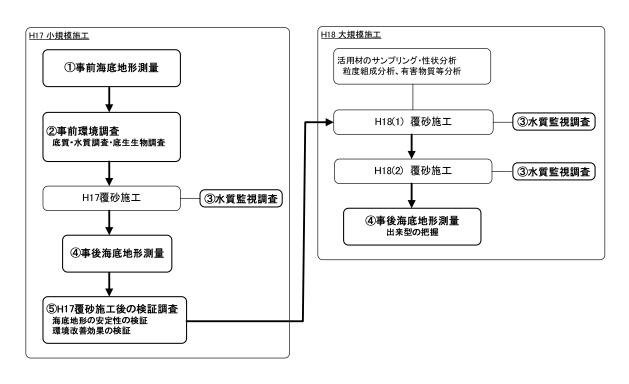


図 3-13 覆砂施工に係る調査のフロー

底質調査状況

底生生物調査状況

水質調査状況

海底地形測量(事前測量)

図 3-14 事前調査状況

覆砂施工中の水質監視調査状況

海底地形測量(事後測量)

図 3-15 施工中水質監視調査、施工後海底地形測量状況

1)覆砂前の海底地形測量(事前測量)

調査方法

深浅測量は精密音響測深機を装備した測量船を、GPS により船位測定を行い計画測線上を誘導する方法で実施した。音響測深機は精密音響測深機 PDR-601 を使用し、2 素子にて行った。測量範囲は覆砂作業区域から 100~300mオーバーラップした範囲とし、測線間隔は「港湾設計・測量・調査等業務共通仕様書」に準じ10mとした。

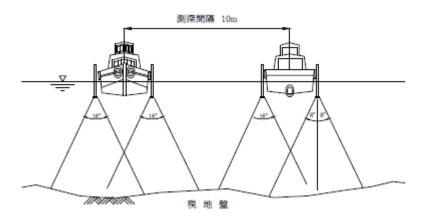
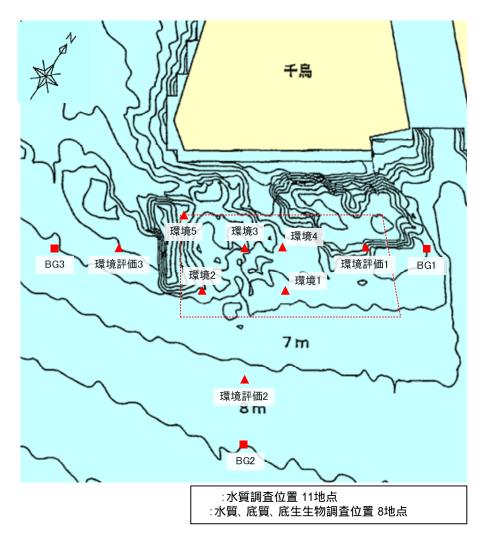


図 3-16 海底地形測量の実施状況

図 3-17 精密音響測探機


調査結果

覆砂前の海底地形測量(事前測量)において、覆砂前後の結果として後述。

2)事前環境調査

調査方法

覆砂施工前における事前環境調査は、覆砂施工予定範囲周辺において、底質調査および底生生物調査 8 地点、水質調査 11 地点を実施した。調査位置を図 3-18 に示す。

注)濁りの影響の評価に関する調査地点の設定について、環境評価地点(環境評価 $1 \sim 3$)における SS は、バックグラウンド地点 ($BG1 \sim 3$) の SS との比較により環境影響を評価するための地点設定である。

図 3-18 覆砂施工前における事前環境調査位置

1.底質調査

底質調査は作業船上からスミスマッキンタイヤ採泥器により採泥し、粒度組成、COD、硫化物、強熱減量、酸化還元電位、含水比の6項目の分析を実施した。

表 3-9 事前調査底質分析項目

項目	測定方法	試 験 方 法・内 容
外観:目視	採泥時に試料を目視し土の工学的	現地における底質の物理的な基本性質を
粒度組成	分類体系に照らして近いものを 試料の分類とする	把握することを目的として、行うものである
外観:目視泥色	採泥時に目視し標準土色帖に示されて いる色見本に近いものを泥色とする	現地における試料の一般的な理化学的性質の 把握を目的として行うものである
臭気	採泥時に試料の臭気を嗅ぎ上水試験 法で定められた臭気の種類に分類する	現地における試料の一般的な理化学的性質の 把握を目的として行うものである
粒度組成	JIS A1204	底質の物理的な基本性質を把握することを 目的として行うものである
CODsed	環水管第127号	底質中の有機物含量の指標の一つである。
化学的酸素要求量	(昭63.9.8)	酸化剤で化学的に酸化した時に消費される
	過マンカン酸カリウムによる酸素消費量	酸素量を表す。数値が大きいほど底質中の 有機物含量の量が多いことを示す。
硫化物	環水管第127号 (昭63.9.8)	亜鉛アンミンで固定した試料を手早く吸引ろ過し、 ろ紙の残留物について硫化物と乾燥重量を測定する。
強熱減量	環水管第127号	底質中の有機物含量の指標の一つである。
(IL)	(昭63.9.8)	試料を強熱(600℃)した際に生ずる減少質量で表す。 加熱の時に失われる成分は揮発性の有機物であり、 強熱残留物の大部分は不揮発性の無機物である。 強熱減量は富栄養化関連で薬類の発生量や 底質中の有機物量(薬類の死骸に起因する)を 推定する指標として用いられる。
酸化還元電位	ORP計による	水中の酸化還元状態の程度を示す指標である。
(ORP)	直接測定	ORPが+であれば酸化反応が、- であれば 還元反応が進行することを意味する。
含水比	環水管第127号 (昭63.9.8)	土の重量に対する含まれている水の量の 重量比を%で表わす。含水量と呼ばれることもある。 含まれている水の量は炉に入れて乾燥させて減った 重量が水という計算をする。

2.底生生物調査

<マクロベントス調査>

マクロベントス調査は成体と幼稚体の大部分が 1mm の7M目に残るサイズの生物を対象とした。具体的には貝類、多毛類、甲殻綱(エピ、 た類等) 棘皮動物(ウニ、ヒトデ類等) など。それ以下大きさの生物はイオベントスと称される。スミスマッキンタイヤ採泥器で採取した試料をふるいにかけて底生生物を採取した。

図 3-19 スミスマッキンタイヤ採泥器

3.水質調査

<水深、水温、塩分、クロロフィル、濁度、DO>

多項目水質計を使用して船上より、ロープにて所定の水深での水温・塩分・ クロロフィル・濁度・DOについて鉛直観測を実施した。

図 3-20 多項目水質計

調査結果

各調査は覆砂施工直前の平成 17 年 7 月 14~15 日に実施した。調査結果を以下に示す。

1.底質調査

各調査地点における水深は $5.9 \sim 9.6 \text{m}$ であり、最も浅い水深 5.9 m の環境 4 以外の調査地点においては腐臭のある底質であった。泥質はヘドロ、シルト、細砂、砂から構成されており、色調は環境 4 で黒茶色、それ以外で黒色であった。


覆砂予定区域における COD は $4.2 \sim 19.8$ mg/g、硫化物は $0.2 \sim 0.7$ mg/g、酸化還元電位は- $173 \sim +270$ mV、含水比は $41.7 \sim 198.4$ %、強熱減量は $2.3 \sim 13.0$ %であった。

酸化還元電位が酸化的数値を示したのは環境 4 のみであり、覆砂予定区域全体としては還元的で腐臭を伴う汚濁の進んだ底質であった。

	調査連点	環境1	環境 2	環境3	環境 4	環境 5	環境・評価1	環境・評価 2	環境・評価3			
試料採用	文年月日	H17. 7. 14	J117. 7. 14	H17. 7. 15	H17. 7. 15	H17. 7. 15						
針科探	取時刻	10:38	11:36	14:03								
天 侯	開建前日	銀り一時雨 雨のち砕り										
人 15	調査当日	雨のち曇り 群										
気 温	調整前日	. 20.5℃~24.8℃ 20.0℃~24.0℃										
XL an.	侧查当日			20. 0℃~24. 0℃				26. 7℃~29. 7℃				
風浪階級	調査前日			2				1				
即和阿拉	調査当日			1				1				
水	粱 .	8. 50m	8.70m	6.60m	5.90m	9.00m	9.30m	9.60m	7. 40m			
	泥質	シルト混じり砂	ヘドロ (シルト)	シルト混じり細砂	シルト混じり細砂	砂混じり細砂	砂混じりシルト	砂質シルト	砂質シルト			
外 観	色調	黒色	黒色	無色	黒茶色	黒色	馬色	黒色	無色			
	夾雜物	貝殻片	貝殻片	貝殻片,貝	與般片, 貝	貝殻片,貝	貝殻片	なし	貝殻片,木片			
臭	纸 .	腐臭 微	威奥 中	腐臭 微	無臭	腐臭 小	, 腐臭 中	腐臭 中	腐臭 中			

表 3-10 事前環境調査底質調査結果

測定項目及	- 12 1M #-	COD	硫化物	酸化還元	ما داد	36 #h 5-h FB.
例是項目及	い年収	COD	19501 (5.490)	電位	含水比	強熱減量
試料名	採取日	mg/g	mg/g	mV	%	%
環境 1	H17.7.14	6.4	0.2	-121	41.7	3.0
環境 2	H17.7.14	19.8	0.7	-173	198.4	13.0
環境 3	H17.7.14	7.0	0.2	-161	52.0	4.4
環境 4	H17.7.14	6.7	0.2	+270	43.5	2.5
環境 5	H17.7.14	4.2	0.2	-155	50.4	2.3
環境・評価 1	H17.7.15	10.2	0.2	-3	71.8	4.7
環境・評価 2	H17.7.15	34.1	0.9	-162	165.1	8.9
環境・評価 3 H17.7.15		32.2	0.4	-187	95.1	7.9
定量下	限	0.1	0.1		0.1	0.1

2.底生生物調査

ひも型動物門 1 種類、軟体動物門 6 種類、環形動物門 13 種類の計 20 種類が確認された。各地点における出現種類数は $2 \sim 13$ 種類であった。サルボウガイ、ホンビノスガイ、カガミガイ、アサリ等の二枚貝類は湿重量が軽いことから当年の加入群であると判断され、継続的な生息場となっていないと考えられた。これら当年加入の二枚貝類を除くと残りの出現種はほとんどが多毛類であった。生物が確認されなかった環境評価 1 を除くすべての調査地点において、強汚濁海域にみられる指標種とされている、Paraprionospio sp. Type A およびクシカギゴカイが出現しており、汚濁の進んだ海域であると考えられた。

表 3-11 事前環境調査底生生物調査結果

単位:個体数、湿重量 g/m² 採泥面積:0.0075 m²

						測点	湖点 原境 - 原境 - 原境・評価															
番号	175	44	B	料 -	学名		:	l.	2	2		3		1	5	3	. 1	l		2	3	,
Ľ						和名	個体数	湿度量	個体数	湿重量	個体数	漫重批	個体数	提重量	儲体数	湿重量	個体数	提重型	傷体数	溫重量	個体数	提重量
1	ひも形動物		-	- "	NEMERTINEA	ひも形動物門	15	0.15			80	0.15			15	0.00					15	0.15
2	软体動物	マキガイ	ニナ	カリバガサガイ	Crepidula onyx .	シマメノウフネガイ															15	0.30
3		ニマイガイ	フネガイ	フネガイ	Scapharca subcrenata	サルボウガイ	15	27.41			74	65.48			15	19.66					104	446,22
4			ハマグリ	マルスダレガイ	Morcenaria merxenaria	ホンピノスガイ					15	32.30	44	126.07	16	59.26						
5					Phacosoma japonicum	カガミガイ							30	0.74								
6					Ruditapes philippinarum	アサリ							44	400.30								
7				ニッコウガイ	Macoma tokyvensis	ゴイサギガイ															30	25.19
8	esterio de la compansión de la compansió	ゴカイ	サシバゴガイ	タンザクゴカイ	Chrysopetalidae	タンザクゴカイ料					15	0.00										
9				カギゴカイ	Sigambra phukotensis	クシカギゴカイ	1067	3.26	59	0.15	998	3.85	356	1.04	741	2.37			119	0.44	30	0.00
10				ゴカイ	Nectoneanthes Intipoda	オウギゴカイ							15	0.30								
11				ニカイテロリ	Glycinde sp.								15	0.00								
12				シロガネゴカイ	Nephtys caeca	ハヤテシロガネゴカイ							15	0.30								
13			インメ	ギボシイソメ	Scalatoma langifolia	カタマガリギボシインメ	15	0.15	44	1.04	30	0.44									193	5.04
14			スピオ	スピオ	Polydora sp.		59	0.16			30	0.15	15	0.00								
15					Paraprionospio sp. Type ∧		18726	47.11	207	12.89	4830	81.11	1807	9.63	2148	26.37			1407	69.19	430	12.89
16					Prionospio pulchra	イトエラスピオ	30	0.00	59	0.00	222	0.15	59	0.00								
17					Spiophanes bombyx	エラナシスピオ							15	0.00								
18			イトゴカイ	イトゴカイ	Mediomustus sp.		296	0.30			163	0.15	119	0.15	30	0.00						
19			チマキゴカイ	チマキゴカイ	Owenia fusiformia	チマキゴカイ					59	0.89	44	1.19								
20			ケヤリ	ケヤラ Chone sp.												1					15	0.00
	川規植類数						8		4		11		18		6		-	-	2		В	
会 計						20223	78.53	369	14.08	6461	134.67	2578	539.72	2964	107.56	-)	1526	69.63	832	489.79	

注: 湿重量の 0.00 は 0.01g 未満を示す。

						底部സ料の概要
試料名	分 類	COD [mg/g]	強熱減量 [%]	硫化物 [mg/g]	臭 気	概 要
環境 1	和粒分まじり砂	6.4	3.0	0.2	腐臭 微	COD, 強熱減量とも低く、有機物が少ない底視といえる。微かな腐臭が認められ、磁化物は 0.2 [mg/g] で ある。強汚渦海域に見られる排振種とされている Paraprionospio sp. Type A (スピオ等)、Sigambra phuketensis (クシカギゴカイ) が優先額として見られた。
環境 2	細粒土	19.8	13.0	0.7	腐臭 中	COD,強熱絨量とも高く、有機物を多く含む底泥といえる。現地での観察では、底泥はヘドロ状であった。 中程度の腐臭が認められ、弧化物は 0.7 [mg/n] である。強汚濁海域に見られる指標種とされている Pamprionospio sp. Typa A (スピオ科) 等が低光種として見られたが、個体数はやや少なかった。
環境 3	細粒分質砂	7.0	4.4	0.2	賦吳 微	COD、強熱減量とも低く、有機物が少ない底泥といえる。微かな緊鈍が認められ、磁化物は 0.2 [mg/g] で ある。強汚渦海域に見られる指標種とされている Paraprionospio sp. Type A (スピオ科)、Sigambra phuketensis (クシカギゴカイ) が優先祖として見られた。
環境 4	70	6.7	2.5	0.2	無 奥	COD, 強熱鼓量とも低く、有機物が少ない底泥といえる。腐臭は認められず、硫化物は 0.2 [mg/s] である。 強汚調節域に見られる指標額とされている Paraprionospio sp. Type A (スピオ科)、Sigambra phuketensis (クシカギゴカイ) が優先種として見られた。砂泥底に生息するアサリが見られた。
環境 5	砂	4,2	2,3	0.2	腐臭 小	COD、強熱減量とも低く、有機物が少ない底泥といえる。腐臭が小程度で認められ、硫化物は 0.2 [mg/g] である。強汚濁海域に見られる指標種とされている Paraprionospio sp. Type A (スピオ科)、Sigambra phuketensis (クシカギゴカイ) が低先種として見られた。
環境・評価 1	礫まじり細粒分質砂	10.2	4.7	0.2	獻吳 中	COD が高く、有機物を含む底泥といえる。中程度の凝臭が認められ、硫化物は0.2 [mg/g] である。底生生物は見られなかった。
環境・評価 2	細粒土	34.1	8.9	0.9	獻吳 中	COD, 強熱敏量とも高く、有機物を多く含む底泥といえる。中程度の原央が認められ、硫化物は $0.9 \ [mg/g]$ である。 強汚濁海域に見られる指標種とされている $Paraprionospio sp.\ Type A$ (スピオ科) 等が低先種として見られた。
環境・評価8	細粒土	32.2	7.9	0.4	腐臭 中	COD、強黙破量とも高く、有機物を多く含む旅港といえる。中程度の顧果が認められ、流化物は $0.4 \ [myg]$ である。強汚濁海域に見られる指標程とされている $Paraprionospio sp.\ Type\ A$ (スピオ科) 等が低光程として見られた。

3.水質調査

水温は概ね $20 \sim 25$ の範囲であり、下層ほど低くなる傾向がみられた。pH は概ね 8 前後であり、下層ほど低くなる傾向がみられた。濁度は $0 \sim 11.9$ 度の範囲であった。クロロフィルは上層 $(0.5\mathrm{m})$ で $37 \sim 63\mu\mathrm{g/L}$ 、中層 $(3.0 \sim 4.0\mathrm{m})$ では $8 \sim 33\mu\mathrm{g/L}$ 、海底面から $1.0\mathrm{m}$ では $2.7 \sim 16\mu\mathrm{g/L}$ であり、上層ほどクロロフィル濃度が高い傾向がみられた。DO は上層では $8\mathrm{mg/L}$ 前後であったが、一部の地点では上層の DO が $10\mathrm{mg/L}$ 以上になっており、過飽和状態となっていた。底層の DO は $0.20 \sim 1.33\mathrm{mg/L}$ と低く、貧酸素化していた。塩分は上層付近で 20%台となっており、河川由来の淡水の影響を受け塩分濃度は低い状態であった。

表 3-12(1) 事前環境調査水質調査結果

地点名	採取深度	測定日	測定時刻	水深	pН	水温	獨度	90074N	DO	電気伝導率	塩分
地名	TRAXINGE	例及日	加州中华	[m]	[-]	[°C]	[度]	[μg/L]	[mg/L]	[S/m]	[‰]
	0.5m		9:58		8.96	23.9	4.6	37	7.68	3.78	24.0
	1.0m		10:03		8.31	23.9	5.7	-	7.57	3.87	24.
	2.0m		10:05		8.30	23.9	5.6	-	7.21	3.94	25.2
	3.0m		10:07		8.23	23.6	3.1	-	5.64	4.10	26.8
環境 1 4.0m	4.0m	H17.7.14	10:10	8.50	8.15	23.2	3.2	8.0	4.60	4.16	26.8
	5.0m		10:15		8,00	22,2	10.2	-	1.10	4.45	28.0
	6.0m		10:19		7.82	21.2	8.4		0.27	4.61	29.7
	7.0m		10:23		7.77	20.5	7.4		0.20	4.74	30,9
	7.5m		10:27		7.75	19.9	7.2	2.7	0.22	4.75	30.7
	0.5m		12:38		8.32	24.0	1.8	47	8.12	3.80	24.5
	1.0m		12:42		8.31	24.0	1.1	-	7.40	3.87	24.8
	2.0m		12:44		8.31	23.9	0.6	-	7.10	8.90	25,1
	3.0m		12:46		8.30	23.5	0.6		6.48	4.10	26.3
環境 2	4.0m	H17.7.14	12:48	8.70	8.26	23.5	0.1	16	5.84	4.18	27.0
	5.0m		12:50		8.04	23.0	1.3		3.33	4.23	27.4
	6.0m		12:52 13:01		7.98	22.0	9.6	-	1.40	4.44	28.8
	7.0m				7.78	20.5	8.2	-	0.35	4.71	30.3
······	7.7m		13:07		7.74	20.1	7.6	3.4	0.35	4.75	30.7
	0.6m		13:38		8.46	24.1	3.7	50	9.11	8.82	24.4
	1.0m		13:41		8.43	24,2	3.3	-	8.47	3.82	24.4
	2.0m		13:43		8.36	23.9	2.2	-	7.00	3.89	24.9
環境 3	3.0m	H17.7.14	13:45	6.60	8.33	23.9	2.4	22	6.72	3.90	25.2
	4.0m		13:47		8.18	23.1	2.5	•	3.76	4.23	27.1
	5.0m		13:50		8.07	22.5	1.8	-	1.41	4.37	28.1
	5.6m		13:56		7.96	22.3	1.8	8.4	1.33		28.5
	0.5m		14:25		8.45	24.5	3.3	59	9.07		24.3
	1.0m		14:26		8.51	24.1	4.9	•	10.09		24.5
環境 4	2.0m	H17.7.14	14:28	5.90	8.39	24.0	3.3		7.62		24.9
	3.0m		14:31		8.38	24.0	3.3	33	7.27		25.8
	4.0m		14:33		8.12	23.1	3.3		2.88		27.5
	4.9m		14:36		8.01	22.5	1.4	16	0,98		28.3
	0.5m		15:03		8.47	24.5	9.4	63	8.53		24.4
	1.0m		15:05		8.47	24.2	9.1		8.84		24.6
	2.0m		15:08		8.36	23.9	8.3		6.32		25.:
105-600 =	3.0m	TYLER	15:12	0.00	8.29	23.8	2.7		5.64		25.4
環境 5	4,0m	H17.7.14	15:16	9.00	8.28	23.5	1.5	8.4	5.44		27.0
	5.0m		15:21		8.04	22.8	2.2		3.21	4.27	27.8
	6.0m		15:26		7.90	21.6	7.8	-	0.35		29.9
	7.0m		15:29		7.81	20.5	10.6		0.11	4.68	30.4
	8.0m		15:32	L	7.77	21.3	9.1	2,9	0,20	4.74	29.8

表 3-12(2) 事前環境調査水質調査結果

地点名	探取深度	測定日	測定時刻	水梁 [m]	pH [-]	水温 [℃]	獨度 [度]	∮0074h [μg/L]	DO [mg/L]	電気伝導率 [S/m]	塩分 [‰]
	0.5m		8:52		8.05	24.0	4.2	-	8.58	3.48	21
	1.0m		8:54	1	8.08	23.8	2.0	-	9.00	3.62	23
	2.0m	1	8:56	1	8.08	23.3	1.8	-	7.81	3.94	2
	3.0m	1	8:59	1	7.99	23.0	4.0	·	3.95	4.24	2'
	4.0m	1	9:02	1	7.84	22.0	2.6		1.97	4.47	2
環境・評価 1	5.0m	H17.7.15	9:04	9.30	7.83	21.4	1.5		1.06	4.59	2
	6.0m	-	9:08	-							
				4	7.81	21.1	0.0		0.84	5.64	3(
	7.0m	-	9:12	-	7.80	20.8	11.9		0.47	4.67	3(
	8.0m		9:14	-	7.76	20.5	7.8		0.35	4.71	3
	8.3m	<u> </u>	9:21		7.78	20.5	6.2	-	0.38	4.72	3
	0.5m	_	11:05	_	8.40	24.8	1.5	-	9.55	3.27	2
	1.0m		11:06	1	8.40	24.2	4.9	-	8.70	3.58	2
	2.0m		11:08]	8.15	. 23.2	0.5	-	5.46	3.99	2
	3.0m		11:11		8.18	22.9	4.3	-	5.06	4.21	2
705.666 . 200 for o	- 4.0m]	11:14]	8.00	22.5	2.7	-	2.48	4.35	2
環境・評価2	5.0m	H17.7.15	11:16	9.60	7.90	21.2	1,5	-	1.22	4.60	2
	6.0m	1	11:19	1	7.85	20.7	1.6	-	0.74	4.69	3
	7.0m	1	11:22	1	7.83	20.5	5.6		0.43	4.71	3
	8.0m	1	11:23	1	7.80	20.3	7.6		0.39	4.73	3
	8.6m	-	11:25	-	7.78						
		-		-		20.3	9.5		0.27	4.74	3
	0.5m	-	13:26	-	8.45	27.1	3.5		11.26	2.63	1
	1.0m	-	13:28	-	8.49	26.6	3.3		11.58	2.79	1
	2.0m	_	13:29		8.33	23,6	2.0	-	6.82	4.01	2
環境・評価3	3.0m	H17.7.15	13:32	7.40	8.21	23.0	4.3	•	5.65	4.18	2
SHOW BY INCO	4.0m		13:35] ,	8.10	22.5	2.9	-	3.35	4.36	2
	5.0m	-	13:37		7.99	21.7	0.2	-	2,42	4.51	2
	6.0m		13:42	1	7.89	21.1	6.0	-	0.53	4.62	2
	6.4m		13:46	1	7.82	20.7	9.5	-	0.38	4.67	3(
地点名	採取深度	測定日	測定時刻	水源	pH	水温	洞度	クロロフィル	DO	電気伝導率	塩分
>es/ii/sis	NAKINGE.	DVIAC H	MACHINA	[m]	[-]	[°C]	[度]	[µ g/L]	[mg/L]	[S/m]	For 3
					F7	LO3 {	re-1	L M 6, 22	[firegred]	round	[%]
-	0.5m		10:11		8.26	24.5	3.6		6.88	3.45	
F	0.5m 1.0m		10:11 10:14		8.26				6.88	3.45	2
-	1.0m		10:14	L3	8.26 8.15	24.5 23.6	3.6 2.4		6.88 5.32	3.45 3.76	2
-	1.0m 2.0m		10:14 10:16		8.26 8.15 8.21	24.5 23.6 23.4	3.6 2.4 5.8	-	6.88 5.32 6.45	3.45 3.76 3.88	2 2
- - -	1.0m 2.0m 3.0m		10:14 10:16 10:19	3	8.26 8.15 8.21 7.98	24.5 23.6 23.4 22.6	3.6 2.4 5.8 1.9	-	6.88 5.32 6.45 1.80	3.45 3.76 3.88 4.37	2 2 2 2
BG1	1.0m 2.0m 3.0m 4.0m	H17.7.15	10:14 10:16 10:19 10:21	9.50	8.26 8.15 8.21 7.98	24.5 23.6 23.4 22.6 22.2	3.6 2.4 5.8 1.9 2.9	-	6.88 5.32 6.45 1.80 2,10	3.45 3.76 3.88 4.37 4.50	2 2 2 2 2
BG1	1.0m 2.0m 3.0m 4.0m 5.0m	H17.7.15	10:14 10:16 10:19 10:21 10:24		8.26 8.15 8.21 7.98 7.95 7.93	24.5 23.6 23.4 22.6 22.2 21.5	3.6 2.4 5.8 1.9 2.9	-	6.88 5.32 6.45 1.80 2.10 2,00	3.45 3.76 3.88 4.37 4.50	2 2 2 2 2 2 2
BG1	1.0m 2.0m 3.0m 4.0m 5.0m	H17.7.15	10:14 10:16 10:19 10:21 10:24 10:29		8.26 8.15 8.21 7.98 7.95 7.93	24.5 23.6 23.4 22.6 22.2 21.5 21.2	3.6 2.4 5.8 1.9 2.9 1.5	-	6.88 5.32 6.45 1.80 2,10 2,00 0.68	3.45 3.76 3.88 4.37 4.50 4.57 4.63	2 2 2 2 2 2 2 2
BG1	1.0m 2.0m 3.0m 4.0m 5.0m	H17.7.15	10:14 10:16 10:19 10:21 10:24		8.26 8.15 8.21 7.98 7.95 7.93	24.5 23.6 23.4 22.6 22.2 21.5	3.6 2.4 5.8 1.9 2.9	-	6.88 5.32 6.45 1.80 2.10 2,00	3.45 3.76 3.88 4.37 4.50	2 2 2 2 2 2 2 2 2 3
BG1	1.0m 2.0m 3.0m 4.0m 5.0m	H17.7.15	10:14 10:16 10:19 10:21 10:24 10:29		8.26 8.15 8.21 7.98 7.95 7.93	24.5 23.6 23.4 22.6 22.2 21.5 21.2	3.6 2.4 5.8 1.9 2.9 1.5	-	6.88 5.32 6.45 1.80 2,10 2,00 0.68	3.45 3.76 3.88 4.37 4.50 4.57 4.63	2 2 2 2 2 2 2
BG1	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m	H17.7.15	10:14 10:16 10:19 10:21 10:24 10:29		8.26 8.15 8.21 7.98 7.95 7.93 7.86	24.5 23.6 23.4 22.6 22.2 21.5 21.2 20.9	3.6 2.4 5.8 1.9 2.9 1.5 1.5	-	6.88 5.32 6.45 1.80 2.10 2.00 0.68	3.45 3.76 3.88 4.37 4.50 4.57 4.63	2 2 2 2 2 2 2 2 2 3 3
BG1	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m	H17.7.15	10:14 10:16 10:19 10:21 10:24 10:29 10:38 10:35		8.26 8.15 8.21 7.98 7.95 7.93 7.86 7.82	24.5 23.6 23.4 22.6 22.2 21.5 21.2 20.9 20.5	3.6 2.4 5.8 1.9 2.9 1.5 1.5 0.3 4.7	-	6.88 5.32 6.45 1.80 2.10 2.00 0.68 0.40	3.45 3.76 3.88 4.37 4.50 4.57 4.63 4.66	2 2 2 2 2 2 2 2 3 3 3
BG1	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.0m 8.5m	H17.7.15	10:14 10:16 10:19 10:21 10:24 10:29 10:38 10:35		8.26 8.15 8.21 7.98 7.95 7.93 7.86 7.82 7.77	24.5 23.6 23.4 22.6 22.2 21.5 21.2 20.9 20.5 20.8	3.6 2.4 5.8 1.9 2.9 1.5 0.3 4.7 8.2		6.88 5.32 6.45 1.80 2.10 2.00 0.68 0.40 0.32	3.45 3.76 3.88 4.37 4.50 4.57 4.63 4.66 4.69	2 2 2 2 2 2 2 2 2 3
BG1	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.0m 8.5m	H17.7.15	10:14 10:16 10:19 10:21 10:24 10:29 10:33 10:35 10:38 12:34		8.26 8.16 8.21 7.98 7.95 7.93 7.85 7.82 7.77 7.74	24.5 23.6 28.4 22.0 22.2 21.5 21.2 20.9 20.5 20.3 25.1	3.6 2.4 5.8 1.9 2.9 1.5 1.5 0.3 4.7 8.2 5.8		6.88 5.32 6.45 1.80 2.10 2.00 0.68 0.40 0.32 0.32	3.45 3.76 3.88 4.37 4.50 4.63 4.63 4.66 4.69 4.73	2 2 2 2 2 2 2 2 3 3 3 3 2 2 2 2 2 2 2 2
BG1	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.0m 8.5m 0.5m	H17.7.15	10:14 10:16 10:19 10:21 10:24 10:29 10:33 10:35 10:38 12:34		8.26 8.15 8.21 7.98 7.95 7.93 7.85 7.82 7.77 7.74 8.49	24.5 23.6 23.4 22.6 22.2 21.5 21.2 20.9 20.5 20.3 25.1 24.1	3.6 2.4 5.8 1.9 2.9 1.5 1.5 0.3 4.7 8.2 5.8		6.88 5.32 6.45 1.80 2.10 2.00 0.68 0.40 0.32 0.32 11.57	3.45 3.76 3.88 4.37 4.50 4.63 4.63 4.69 4.73 3.30 3.65	2 2 2 2 2 2 2 2 3 3 3 3 2 2 2 2 2 2 2 2
BG1	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.5m 0.5m 1.0m 2.0m 3.0m	H17.7.15	10:14 10:16 10:19 10:21 10:24 10:29 10:33 10:35 10:38 12:34 12:37 12:39		8.26 8.15 8.21 7.98 7.95 7.85 7.82 7.77 7.74 8.49 8.41 8.39	24.5 23.6 23.4 22.6 22.2 21.5 21.2 20.9 20.5 20.3 25.1 24.1 23.7 23.1	3.6 2.4 5.8 1.9 2.9 1.5 0.3 4.7 8.2 5.8 4.2		6.88 5.32 6.45 1.80 2.10 2.00 0.68 0.40 0.32 0.32 11.57 10.53 11.61 6.18	3.45 3.76 3.88 4.37 4.50 4.63 4.66 4.69 4.73 3.30 3.65 4.01	2 2 2 2 2 2 2 2 3 3 3 3 2 2 2 2 2 2 2 2
	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.5m 0.5m 1.0m 2.0m 3.0m 4.0m		10:14 10:16 10:19 10:21 10:24 10:29 10:33 10:35 10:38 12:34 12:37 12:39 12:42	9.50	8.26 8.15 8.21 7.98 7.99 7.85 7.82 7.77 7.74 8.49 8.41 8.39 8.21	24.5 23.6 23.4 22.2 21.5 21.2 20.9 20.5 20.3 25.1 24.1 23.7 23.1 22.7	3.6 2.4 5.8 1.9 2.9 1.5 0.3 4.7 8.2 5.8 4.2 2.6 1.4		6.88 5.32 6.45 1.80 2.10 2.00 0.68 0.40 0.32 11.57 10.53 11.61 6.18	3.45 3.76 3.88 4.37 4.50 4.63 4.66 4.69 4.73 3.30 3.65 4.01 4.11	2 2 2 2 2 2 2 3 3 3 3 2 2 2 2 2 2 2 2 2
BG1	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.5m 0.5m 1.0m 2.0m 3.0m 4.0m 5.0m	H17.7.15	10:14 10:16 10:19 10:21 10:24 10:29 10:33 10:35 10:38 12:34 12:37 12:39 12:42 12:43 12:45		8.26 8.15 8.21 7.98 7.99 7.85 7.82 7.77 7.74 8.49 8.41 8.39 8.21 8.10	24.5 23.6 23.4 22.2 21.5 21.2 20.9 20.5 20.3 25.1 24.1 23.7 23.1 22.7 21.3	3.6 2.4 5.8 1.9 2.9 1.5 0.3 4.7 8.2 5.8 4.2 2.6 1.4 3.3		6.88 5.32 6.45 1.80 2.10 2.00 0.68 0.40 0.32 11.57 10.53 11.61 6.18 3.54	3.45 3.76 3.88 4.37 4.50 4.63 4.66 4.69 4.73 3.30 3.65 4.01 4.11 4.31	2 2 2 2 2 2 2 3 3 3 3 2 2 2 2 2 2 2 2 2
	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.5m 0.5m 1.0m 2.0m 3.0m 4.0m 5.0m		10:14 10:16 10:19 10:21 10:24 10:29 10:33 10:35 10:38 12:34 12:37 12:39 12:42 12:43 12:45	9.50	8.26 8.15 8.21 7.98 7.99 7.86 7.82 7.77 7.74 8.49 8.41 8.39 8.21 8.10 7.92	24.5 23.6 23.4 22.2 21.5 21.2 20.3 20.5 20.3 25.1 24.1 23.7 23.1 22.7 21.3 21.0	3.6 2.4 5.8 1.9 2.9 1.5 0.3 4.7 8.2 5.8 4.2 2.6 1.4 3.3 1.7 0.6		6.88 5.32 6.45 1.80 2.10 2.00 0.68 0.40 0.32 11.57 10.53 11.61 6.18 3.54 1.61 3.32	3.45 3.76 3.88 4.37 4.50 4.63 4.66 4.69 4.73 3.30 3.65 4.01 4.11 4.31 4.58	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.5m 0.5m 1.0m 2.0m 3.0m 4.0m 5.0m 6.0m		10:14 10:16 10:19 10:21 10:24 10:29 10:33 10:35 10:38 12:34 12:37 12:39 12:42 12:43 12:45 12:48 12:49	9.50	8.26 8.15 8.21 7.98 7.99 7.85 7.82 7.77 7.74 8.49 8.41 8.39 8.21 8.10 7.92 7.94	24.5 23.6 23.4 22.2 21.5 21.2 20.9 20.5 20.3 25.1 24.1 23.7 23.7 21.3 21.0 20.8	3.6 2.4 5.8 1.9 2.9 1.5 0.3 4.7 8.2 5.8 4.2 2.6 1.4 3.3 1.7 0.6		6.88 5.32 6.45 1.80 2.10 2.00 0.68 0.40 0.32 11.57 10.53 11.61 6.18 3.54 1.61 3.32 2.51	3.45 3.76 3.88 4.37 4.50 4.63 4.66 4.69 4.73 3.30 3.65 4.01 4.11 4.31 4.58 4.65	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.5m 0.5m 1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m		10:14 10:16 10:19 10:21 10:24 10:29 10:33 10:35 10:38 12:34 12:37 12:39 12:42 12:43 12:45 12:48 12:49 12:52	9.50	8.26 8.15 8.21 7.98 7.95 7.85 7.82 7.77 7.74 8.49 8.21 8.10 7.92 7.94 7.93	24.5 23.6 23.4 22.2 21.5 21.2 20.9 20.5 20.3 25.1 24.1 23.7 23.1 22.7 21.3 21.0 20.8	3.6 2.4 5.8 1.9 2.9 1.5 0.3 4.7 8.2 5.8 4.2 2.6 1.4 3.3 1.7 0.6 0.0		6.88 5.32 6.45 1.80 2.10 2.00 0.68 0.40 0.32 11.57 10.53 11.61 6.18 3.54 1.61 3.32 2.51	3.45 3.76 3.88 4.37 4.50 4.63 4.66 4.69 4.73 3.30 3.65 4.01 4.11 4.31 4.58 4.65 4.68	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.5m 0.5m 1.0m 2.0m 3.0m 4.0m 5.0m 6.0m		10:14 10:16 10:19 10:21 10:24 10:29 10:38 10:35 10:38 12:34 12:37 12:39 12:42 12:43 12:45 12:48 12:49 12:59	9.50	8.26 8.15 8.21 7.98 7.99 7.86 7.82 7.77 7.74 8.49 8.21 8.10 7.92 7.94 7.93	24.5 23.6 23.4 22.2 21.5 21.2 20.9 20.5 20.3 25.1 24.1 23.7 23.7 21.3 21.0 20.8	3.6 2.4 5.8 1.9 2.9 1.5 0.3 4.7 8.2 5.8 4.2 2.6 1.4 3.3 1.7 0.6		6.88 5.32 6.45 1.80 2.10 2.00 0.68 0.40 0.32 11.57 10.53 11.61 6.18 3.54 1.61 3.32 2.51	3.45 3.76 3.88 4.37 4.50 4.57 4.63 4.66 4.69 4.73 3.30 3.65 4.01 4.11 4.31 4.58 4.65 4.68 4.73 4.76	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.5m 0.5m 1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m		10:14 10:16 10:19 10:21 10:24 10:29 10:33 10:35 10:38 12:34 12:37 12:39 12:42 12:43 12:45 12:48 12:49 12:52	9.50	8.26 8.15 8.21 7.98 7.95 7.85 7.82 7.77 7.74 8.49 8.21 8.10 7.92 7.94 7.93	24.5 23.6 23.4 22.2 21.5 21.2 20.9 20.5 20.3 25.1 24.1 23.7 23.1 22.7 21.3 21.0 20.8	3.6 2.4 5.8 1.9 2.9 1.5 0.3 4.7 8.2 5.8 4.2 2.6 1.4 3.3 1.7 0.6 0.0		6.88 5.32 6.45 1.80 2.10 2.00 0.68 0.40 0.32 11.57 10.53 11.61 6.18 3.54 1.61 3.32 2.51	3.45 3.76 3.88 4.37 4.50 4.63 4.66 4.69 4.73 3.30 3.65 4.01 4.11 4.31 4.58 4.65 4.68	\$ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.5m 0.5m 1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m		10:14 10:16 10:19 10:21 10:24 10:29 10:38 10:35 10:38 12:34 12:37 12:39 12:42 12:43 12:45 12:48 12:49 12:59	9.50	8.26 8.15 8.21 7.98 7.99 7.86 7.82 7.77 7.74 8.49 8.21 8.10 7.92 7.94 7.93	24.5 23.6 23.4 22.2 21.5 21.2 20.9 20.5 20.3 25.1 24.1 23.7 23.1 22.7 21.3 21.0 20.8 20.4 19.9	3.6 2.4 5.8 1.9 2.9 1.5 0.3 4.7 8.2 5.8 4.2 2.6 1.4 3.3 1.7 0.6 0.0 1.5 6.2		6.88 5.32 6.45 1.80 2.10 2.00 0.68 0.40 0.32 11.57 10.53 11.61 6.18 3.54 1.61 3.32 2.51 0.48	3.45 3.76 3.88 4.37 4.50 4.57 4.63 4.66 4.69 4.73 3.30 3.65 4.01 4.11 4.31 4.58 4.65 4.68 4.73 4.76	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.5m 0.5m 1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.0m 9.0m 9.4m		10:14 10:16 10:19 10:21 10:24 10:29 10:38 10:35 10:38 12:34 12:37 12:39 12:42 12:43 12:45 12:48 12:49 12:52 13:02	9.50	8.26 8.15 8.21 7.98 7.99 7.86 7.82 7.77 7.74 8.49 8.21 8.10 7.92 7.94 7.93 7.82	24.5 23.6 23.4 22.2 21.5 21.2 20.9 20.5 20.3 25.1 24.1 23.7 23.1 22.7 21.3 21.0 20.8 20.4 19.9 19.6	3.6 2.4 5.8 1.9 2.9 1.5 0.3 4.7 8.2 5.8 4.2 2.6 1.4 3.3 1.7 0.6 0.0 1.5 6.2		6.88 5.32 6.45 1.80 2.10 2.00 0.68 0.40 0.32 11.57 10.53 11.61 6.18 3.54 1.61 3.32 2.51 0.48 0.21	3.45 3.76 3.88 4.37 4.50 4.57 4.63 4.66 4.69 4.73 3.30 3.65 4.01 4.11 4.31 4.58 4.65 4.68 4.73 4.76 4.80 2.76	
	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.0m 8.5m 0.5m 1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.0m 9.0m 9.4m 0.5m		10:14 10:16 10:19 10:21 10:24 10:29 10:38 10:35 10:38 12:34 12:37 12:39 12:42 12:43 12:45 12:48 12:49 12:52 13:02 14:52 14:53	9.50	8.26 8.15 8.21 7.98 7.95 7.85 7.82 7.77 7.74 8.49 8.41 8.39 8.21 8.10 7.92 7.94 7.93 7.82 7.74 8.54	24.5 23.6 23.4 22.6 21.5 21.2 20.9 20.5 20.3 25.1 24.1 23.7 23.1 22.7 21.3 21.0 20.8 20.4 19.9 19.6 26.7 26.3	3.6 2.4 5.8 1.9 2.9 1.5 0.3 4.7 8.2 5.8 4.2 2.6 1.4 3.3 1.7 0.6 0.0 1.5 6.2 6.9 7.0 6.2		6.88 5.32 6.45 1.80 2.10 2.00 0.68 0.40 0.32 11.57 10.53 11.61 6.18 3.54 1.61 3.32 2.51 0.48 0.21 0.27 12.25	3.45 3.76 3.88 4.37 4.50 4.57 4.63 4.66 4.69 4.73 3.30 3.65 4.01 4.11 4.31 4.58 4.65 4.68 4.73 4.76 4.80 2.76	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.0m 8.5m 0.5m 1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.0m 9.0m 9.4m 0.5m 1.0m 2.0m		10:14 10:16 10:19 10:21 10:24 10:29 10:38 10:35 10:38 12:34 12:37 12:39 12:42 12:43 12:45 12:48 12:49 12:52 13:02 14:52 14:53 14:55	9.50	8.26 8.15 8.21 7.98 7.95 7.82 7.77 7.74 8.49 8.41 8.39 8.21 8.10 7.92 7.94 7.93 7.82 7.74 8.53 8.21	24.5 23.6 23.4 22.6 22.2 21.5 21.2 20.9 20.5 20.3 25.1 24.1 23.7 21.3 21.0 20.8 20.4 19.9 19.6 26.7 26.3 23.5	3.6 2.4 5.8 1.9 2.9 1.5 0.3 4.7 8.2 5.8 4.2 2.6 1.4 3.3 1.7 0.6 0.0 1.5 6.2 6.9 7.0 6.2 3.8		6.88 5.32 6.45 1.80 2.10 2.00 0.68 0.40 0.32 11.57 10.53 11.61 6.18 3.54 1.61 3.32 2.51 0.48 0.21 0.27 12.25 11.97 6.31	3.45 3.76 3.88 4.37 4.50 4.57 4.63 4.66 4.69 4.73 3.30 3.65 4.01 4.11 4.31 4.58 4.65 4.68 4.73 4.76 4.80 2.76 2.78	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
BG2	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.0m 8.5m 0.5m 1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.0m 9.0m 9.4m 0.5m 1.0m 2.0m 3.0m	H17.7.16	10:14 10:16 10:19 10:21 10:24 10:29 10:38 10:38 12:34 12:37 12:39 12:42 12:43 12:45 12:48 12:49 12:52 12:59 13:02 14:52 14:53 14:55 14:57	9.50	8.26 8.15 8.21 7.98 7.95 7.82 7.77 7.74 8.49 8.41 8.39 8.21 8.10 7.92 7.94 7.93 7.82 7.74 8.53 8.23 8.21	24.5 23.6 23.4 22.6 22.2 21.5 21.2 20.9 20.5 20.3 25.1 24.1 23.7 21.3 21.0 20.8 20.4 19.9 19.6 26.7 26.3 23.5 23.0	3.6 2.4 5.8 1.9 2.9 1.5 0.3 4.7 8.2 5.8 4.2 2.6 1.4 3.3 1.7 0.6 0.0 1.5 6.2 6.9 7.0 6.2 3.8		6.88 5.32 6.45 1.80 2.10 2.00 0.68 0.40 0.32 11.57 10.53 11.61 6.18 3.54 1.61 3.32 2.51 0.48 0.21 0.27 12.25 11.97 6.31 4.53	3.45 3.76 3.88 4.37 4.50 4.57 4.63 4.66 4.69 4.73 3.30 3.65 4.01 4.11 4.31 4.58 4.65 4.68 4.73 4.76 4.80 2.76 2.78 4.04	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.0m 8.5m 0.5m 1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.0m 9.0m 9.4m 0.5m 1.0m 2.0m 3.0m 4.0m 5.0m		10:14 10:16 10:19 10:21 10:24 10:29 10:38 10:38 12:34 12:37 12:39 12:42 12:45 12:45 12:48 12:45 12:49 12:52 13:02 14:52 14:53 14:55 14:57 15:00	9.50	8.26 8.15 8.21 7.98 7.95 7.82 7.77 7.74 8.49 8.41 8.39 8.21 8.10 7.92 7.94 7.93 7.82 7.74 8.53 8.21 8.21 8.30 8.21	24.5 23.6 23.4 22.6 22.2 21.5 21.2 20.9 20.5 20.3 25.1 24.1 23.7 21.3 21.0 20.8 20.4 19.9 19.6 26.7 26.3 23.5 23.0 22.5	3.6 2.4 5.8 1.9 2.9 1.5 0.3 4.7 8.2 5.8 4.2 2.6 1.4 3.3 1.7 0.6 0.0 1.5 6.2 6.9 7.0 6.2 3.8 1.4 3.6		6.88 5.32 6.45 1.80 2.10 2.00 0.68 0.40 0.32 11.57 10.53 11.61 6.18 3.54 1.61 3.32 2.51 0.48 0.21 0.27 12.25 11.97 6.31 4.53 2.96	3.45 3.76 3.88 4.37 4.50 4.57 4.63 4.66 4.69 4.73 3.30 3.65 4.01 4.11 4.31 4.58 4.65 4.68 4.73 4.76 4.80 2.76 2.78 4.04 4.20 4.37	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
BG2	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.0m 8.5m 0.5m 1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.0m 9.4m 0.5m 1.0m 2.0m 3.0m 4.0m 5.0m	H17.7.16	10:14 10:16 10:19 10:21 10:24 10:29 10:38 10:38 12:34 12:37 12:39 12:42 12:45 12:45 12:48 12:49 12:52 12:59 13:02 14:52 14:53 14:55 14:57 15:00 15:02	9.50	8.26 8.15 8.21 7.98 7.95 7.85 7.82 7.77 7.74 8.49 8.41 8.39 8.21 8.10 7.92 7.94 7.93 7.82 7.74 8.53 8.21 8.53	24.5 23.6 23.4 22.6 22.2 21.5 21.2 20.9 20.5 20.3 25.1 24.1 23.7 21.3 21.0 20.8 20.4 19.9 19.6 26.7 26.3 23.5 23.0 22.5 21.8	3.6 2.4 5.8 1.9 2.9 1.5 0.3 4.7 8.2 5.8 4.2 2.6 1.4 3.3 1.7 0.6 0.0 1.5 6.2 6.9 7.0 6.2 3.8 1.4 3.6 2.8		6.88 5.32 6.46 1.80 2.10 2.00 0.68 0.40 0.32 11.57 10.53 11.61 6.18 3.54 1.61 0.48 0.21 0.27 12.25 11.97 6.31 4.53 2.96 2.32	3.45 3.76 3.88 4.37 4.50 4.57 4.63 4.66 4.69 4.73 3.30 3.65 4.01 4.11 4.31 4.58 4.65 4.68 4.73 4.76 4.80 2.76 2.78 4.04 4.20 4.37	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
BG2	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.0m 8.5m 0.5m 1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.0m 9.0m 9.4m 0.5m 1.0m 2.0m 3.0m 4.0m 5.0m	H17.7.16	10:14 10:16 10:19 10:21 10:24 10:29 10:38 10:38 12:34 12:37 12:39 12:42 12:45 12:45 12:48 12:45 12:49 12:52 13:02 14:52 14:53 14:55 14:57 15:00	9.50	8.26 8.15 8.21 7.98 7.95 7.85 7.86 7.82 7.77 7.74 8.49 8.41 8.39 8.21 8.10 7.92 7.94 7.93 7.85 8.77 7.74 8.64 8.77 7.70 8.64 8.63 8.77 7.79 8.70 7.70 8.70 7.70 8.70 7.70 8.70 7.70 8.70 7.70 7.70 8.70 7.70 8.70 7.70 8.70 7.70 7.70 8.70 7.70 8.70 7.70 7.70 8.70 7.70 8.70 7.70 8.70 7.70 8.70 7.70 8.70 7.70 8.70 7.70 8.70 7.70 8.70 7.70 8.70 7.70 8.70 8.70 7.70 8.70 8.70 7.70 8.70	24.5 23.6 23.4 22.6 22.2 21.5 21.2 20.9 20.5 20.3 25.1 24.1 23.7 21.3 21.0 20.8 20.4 19.9 19.6 26.7 26.3 23.5 23.0 22.5	3.6 2.4 5.8 1.9 2.9 1.5 0.3 4.7 8.2 5.8 4.2 2.6 1.4 3.3 1.7 0.6 0.0 1.5 6.2 6.9 7.0 6.2 3.8 1.4 3.6		6.88 5.32 6.45 1.80 2.10 2.00 0.68 0.40 0.32 11.57 10.53 11.61 6.18 3.54 1.61 3.32 2.51 0.48 0.21 0.27 12.25 11.97 6.31 4.53 2.96	3.45 3.76 3.88 4.37 4.50 4.57 4.63 4.66 4.69 4.73 3.30 3.65 4.01 4.11 4.31 4.58 4.65 4.68 4.73 4.76 4.80 2.76 2.78 4.04 4.20 4.37	
BG2	1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.0m 8.5m 0.5m 1.0m 2.0m 3.0m 4.0m 5.0m 6.0m 7.0m 8.0m 9.4m 0.5m 1.0m 2.0m 3.0m 4.0m 5.0m	H17.7.16	10:14 10:16 10:19 10:21 10:24 10:29 10:38 10:38 12:34 12:37 12:39 12:42 12:45 12:45 12:48 12:49 12:52 12:59 13:02 14:52 14:53 14:55 14:57 15:00 15:02	9.50	8.26 8.15 8.21 7.98 7.95 7.85 7.82 7.77 7.74 8.49 8.41 8.39 8.21 8.10 7.92 7.94 7.93 7.82 7.74 8.53 8.21 8.53	24.5 23.6 23.4 22.6 22.2 21.5 21.2 20.9 20.5 20.3 25.1 24.1 23.7 21.3 21.0 20.8 20.4 19.9 19.6 26.7 26.3 23.5 23.0 22.5 21.8	3.6 2.4 5.8 1.9 2.9 1.5 0.3 4.7 8.2 5.8 4.2 2.6 1.4 3.3 1.7 0.6 0.0 1.5 6.2 6.9 7.0 6.2 3.8 1.4 3.6 2.8		6.88 5.32 6.46 1.80 2.10 2.00 0.68 0.40 0.32 11.57 10.53 11.61 6.18 3.54 1.61 0.48 0.21 0.27 12.25 11.97 6.31 4.53 2.96 2.32	3.45 3.76 3.88 4.37 4.50 4.57 4.63 4.66 4.69 4.73 3.30 3.65 4.01 4.11 4.31 4.58 4.65 4.68 4.73 4.76 4.80 2.76 2.78 4.04 4.20 4.37	

3)覆砂施工中の水質監視調査

調査方法

覆砂作業に伴う濁りの発生、水質を監視するため、施工位置周辺海域において水質監視調査を実施した。水質監視調査実施項目を表 3-13 に示す。平成 17 年の施工時は SS を対象とし、工事期間中に 3 回 (1 週間毎)実施した。平成 17 年と比較してより多くの土量を施工する平成 18 年は監視項目を強化し、SS の他、水温、塩分、pH、DO を対象とし、基本的に全ての工事日において実施した。

環境評価地点における SS の環境管理目標値は、バックグラウンド地点(BG1 \sim 3) の層別 SS 平均値の+10mg/L 以内とした。

調査時期 調査内容 地点数

平成 17 年 7月 29 日 濁度計により濁度を測定するとともにバンドーン採水 6 地点
平成 17 年 8月 5 日 器により採水し SS の分析を実施
平成 17 年 8月 10 日 採水層:表層(0.5m)、中層、底面から 1m

平成 18 年 5 月 12 日 濁度、SS (濁度換算)、水温、塩分、pH、DO
~6月 29 日 採水層:表層(0.5m)、中層、底面から 1m

表 3-13 水質監視調查実施項目

表 3-14 水質監視調査、	夏砂施工時期
----------------	---------------

項目/時期	平成17年		平成18年						
以 日 / 时 初	7月	8月	4月	5月	6月	7月	8月		
水質監視調査	-			_					
H17 覆砂施工 (70,620m³)									
H18(1) 覆砂施工 (212,800m³)									
H18(2) 覆砂施工 (162,000m³)									

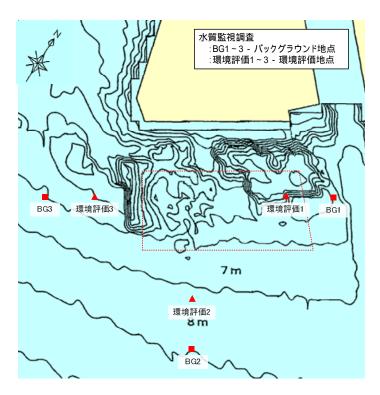


図 3-21 水質監視調査地点

調査結果

環境評価地点における SS の評価値を表 3- 15 に示す。環境評価地点における SS の評価値 SS は、日最小、日最大、期間平均ともに目標とした 10 未満であり、 SS に関して工事施工による影響は目標を達成した。期間平均の数値を確認すると、環境評価 1 で-1.6 ~ 0.6、環境評価 2 で-1.2 ~ 0.8、環境評価 3 で-0.3 ~ 1.1 であり、覆砂区域に近い環境評価地点とより遠いバックグラウンド地点において、SS に大きな差はみられなかった。これは濁水の拡散しにくい 2 重管トレミー工法による施工効果と考えられた。

本調査は工事中の水質監視が目的であるため、元データは日報として日単位でまとめられ(図 3-22) 評価値を確認しながら覆砂施工が進められた。水質監視調査の結果、覆砂施工による周辺海域の水質への顕著な影響は確認されなかった。

表 3-15 環境評価地点における SS の評価値

$\overline{}$		評価値 SS										
				環境評価1			環境評価	2	環境評価3			
			最小	最大	平均	最小	最大	平均	最小	最大	平均	
	7月29日~8月10日	0.5m	-2.3	-1.3	-1.2	-2.3	-0.3	-1.2	-2.0	1.7	0.6	
H17	17 週1回の計3日間	5.0m	-2.7	-0.7	-1.6	-1.7	-0.3	-1.2	-3.7	4.3	0.4	
	(7/29, 8/5, 8/10)	底面上1.0m	-1.3	1.7	-0.2	-0.1	2.7	0.8	-1.0	3.7	1.1	
	5月12日~5月31日 工事実施日17日間	0.5m	-4.2	3.2	-0.4	-4.8	2.8	-0.1	-7.8	5.3	0.0	
		5.0m	-1.4	1.4	0.0	-0.7	2.5	0.4	-0.7	2.1	0.2	
		底面上1.0m	-1.4	0.7	-0.1	-0.9	1.2	0.1	-1.4	0.9	-0.2	
	6月1日~6月29日	0.5m	-11.8	4.4	-0.2	-17.8	3.5	-0.7	-0.9	2.3	0.3	
H18	工事実施日20日間	5.0m	-0.9	4.4	0.4	-1.8	3.9	0.3	-1.8	0.7	-0.3	
		底面上1.0m	-4.4	5.3	-0.2	-2.5	3.2	0.6	-3.7	3.0	0.1	
	7月9日~8月3日	0.5m	-3.0	2.1	0.3	-1.8	2.8	-0.2	-2.3	3.2	0.1	
	工事実施日20日間	5.0m	-1.6	3.7	0.6	-1.8	3.2	0.3	-1.8	3.5	0.5	
		底面上1.0m	-2.3	5.3	0.6	-2.3	2.5	0.3	-1.6	5.5	1.0	

注)環境管理目標値は、評価値 SS<10

SS={各環境評価地点のSS - (バックグラウンド3地点のSSの平均)}

平成18年は平成17年と比較し施工土量が多いため、水質監視調査日数を増やし、監視を強化した。

様式1(2)

毎日調査の結果(日報)

調査年月日: 平成18年7月9日調査位置: 浦安市千島沖

					D*1 JA	102 pag	/m × 11	1 20 /
	调查地点		В	地点			評価地点	
項目	-	1	2	3	平均	1	2	3
時刻		9:15	9:30	9:45		10:40	10:20	10:05
天候		曇り	退り	曇り		量り	晴れ	墨り
気温(℃)		28.0	28.0	28.0		28.0	28.0	28.0
風向		北東	北東	北東		北東	西	北東
風速(m)		3.5	3.5	3.5		3.5	3.5	3.5
水深(m)		7.6	10.0	9.0		8.6	10.0	8.6
色相		暗灰色	暗灰色	暗灰色	_	暗灰色	暗灰色	暗灰色
透明度(m)		1.0	1.0	1.0		1.0	1.0	1.0
	上層	25.1	24.7	24.7		24.4	24.7	24.6
水温(℃)	中層	24.6	24.4	24.5		24.6	24.5	24.4
	下層	24.6	24.1	24.0		24.6	24.3	24.1
	上層	25.8	25.7	24.6		25.5	25.7	25.6
塩分	中層	25.9	25.8	25.2		25.7	25.9	25.9
	下層	25.9	25.8	25.7		25.7	26.3	25.9
	上 層	3.0	3.0	3.0		5.0	5.0	2.0
濁度(度)	中層	2.0	1.0	2.0		4.0	2.0	2.0
	下層	2,0	1.0	2.0		4.0	2.0	2.0
All strike At At an	上 層	2.076	2.076	2.076	2.076	3.460	3.460	1.384
濁度換算SS	中層	1.384	0.692	1.384	1.153	2.768	1.384	1.384
(mg/L)	下 層	1.384	0.692	1.384	1.153	2.768	1.384	1.384
931 / E / Hr	上層	-	T -	_	_	1.384	1.384	-0.692
評価値 (⊿ss)	中層	_	T -	_	_	1.615	0.231	0.231
(233)	下層	_	-	_	_	1.615	0.231	0.231
	上層	7.35	7.25	7.42		7.42	7.34	7.43
pН	中層	7.14	7.46	7.34		7.22	7.53	7.36
	下層	7.25	7.38	7.43		7.46	7.55	7.54
	上層	9.04 -	9.75	9.79		9.78	10.13	10.20
DO(mg/L)	中層	10.27	8.72	9.38 -	,	9.74	9.39	8.72
	下層	10.89	7.57	7.30	111111111111111111111111111111111111111	9.38	7.90	7.06-,
	上層	115.6	123.8	124.3-	-	123.6	128.7	129.3
DO飽和度(%)	中層	130.2	110.2	118.7	-	123.5	118.9	110.2
	下層	138.1	95.2	91.6	_	118.9	99.7	88.8
赤潮		有 急	有無	有 鋤	_	有 鲁	有働	有働
底曳き網漁の		有 锄	有働	有 ⑪	_	有 無	有 癦	有 億
大型船舶の制	ίπ	有無	有 鄦			有 無	有 🕮	有働
気象海象		有 働	有無	有 鰓		有 会	有 册	有働
その他					_			

※SS換算式:y=0.692x y:SS値(mg/L),x濁度(度) 評価値(∠SS)=各評価点のSS換算値ーバックグランドのSSの平均値 管理目標値:評価値(∠SS) 10mg/L以下

環境管理目標	適分	不適合	報告時間	17:00	担当職員	
報告後の担当	職員からの指示	調査完	♪・原	因究明調査の実施	その他()

日報の受理 (氏名)

図 3-22 水質監視のための日報の様式例

4)覆砂後の海底地形測量(事後測量)

調査方法

覆砂前の海底地形測量(事前測量)との比較を行う為、同様の方法で実施した。

調査結果

覆砂施工前における海底地形測量結果を図 3-23 に、覆砂施工後における同結果を図 3-24 に、平成 17 年、18 年における覆砂厚の合計(覆砂出来型)を図 3-25 に示す。

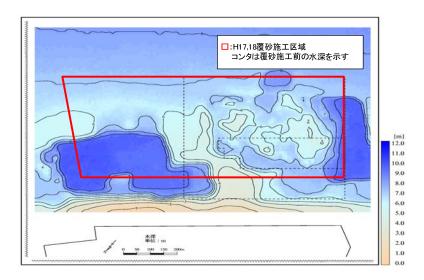


図 3-23 覆砂施工前における海底地形測量結果(平成 17年7月/事前測量)

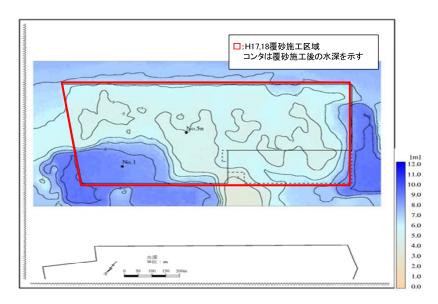
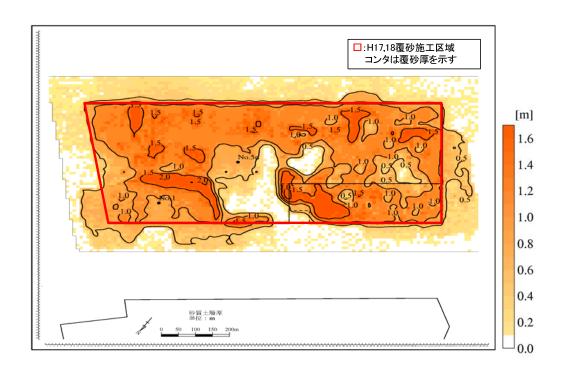
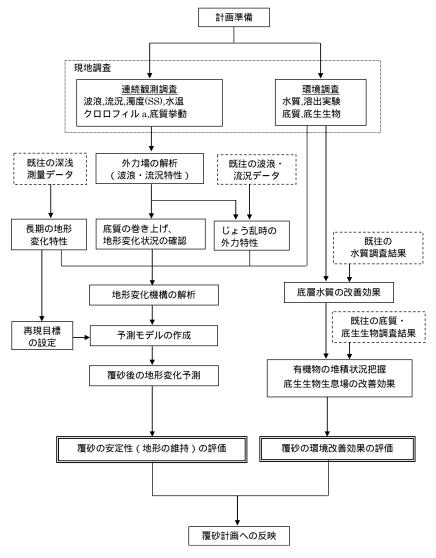



図 3-24 覆砂施工後における海底地形測量結果(平成 18年8月/事後測量)

計画時(第 1 章・設計・施工計画)における覆砂厚は 1 m であった。覆砂区域において実績となる土量は、図 3- 25 に示す覆砂出来型においては 0 m~2.4 m と、計画と比較してばらつきがでている。これは、図 3- 23 に示す原地形が起伏に富んでおり、覆砂した活用材が地盤高の高い方から低い方へと覆砂後に移動するためと考えられた。そのため、図 3- 25 に示す平成 17 年、18 年における覆砂厚の合計(覆砂出来型)では、元々地盤高の高い場所では覆砂厚が薄く、斜面となる場所で厚い傾向があるが、施工区域全体を平均すると 1.1 m の覆砂となった。



覆砂前の測量結果(平成17年7月)と覆砂後の測量結果(平成18年8月)の差から覆砂厚を算出

図 3-25 平成 17年、18年における覆砂厚の合計(覆砂出来型)

5)平成 17 年覆砂後の検証調査

平成 17 年の小規模な覆砂施工後、平成 18 年の大規模な覆砂施工の前に底質、地形の安定性および海域の環境改善効果について検証調査を実施した。本調査では、既往の深浅測量データ、波浪、流況データと現地調査観測データの解析により、覆砂後の地形変化予測を行い、覆砂の安定性を検討した。また、水質、底質、底生生物、溶出等の現地環境調査結果から、覆砂後の海底底質や海域の環境改善効果を検討した。調査のフローを図 3- 26 に、現地調査項目を表 3- 16 に示す。

出典:平成17年度東京湾奥地区環境管理調査報告書

図 3-26 平成 17 年覆砂後の検証調査のフロー

表 3-16 現地調査項目・工程

工種名称	9月	10月	11月	12月	1月	2月	3月	備考
1) 覆砂した底質の								
安定性の評価		_						破線は解析
連続観測調査								
30 昼夜観測								
2) 地形変化解析								
既往資料の整理		_						
波浪变形								
流況・海浜流						•		
地形変化予測					_			
3) 環境調査								
2 季観測		_						破線は分析
								等

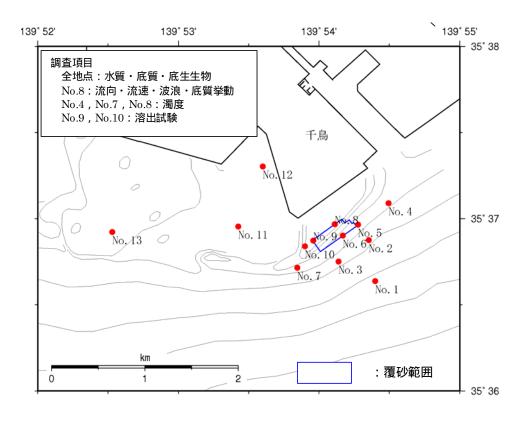


図3-27 調査位置図(平成17年覆砂後の検証調査)

覆砂した底質の安定性の検討

地形の安定性の検討にあたり、連続観測により得たデータから対象海域の物理特性および覆砂した底質の安定性について、以下の手順で検討した。

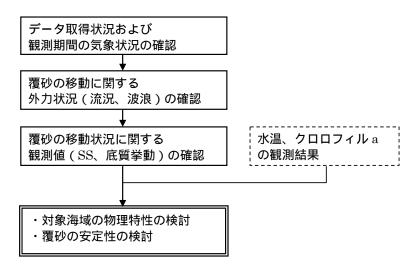


図 3-28 覆砂した底質の安定性についての検討手順(連続観測調査)

覆砂した底質の安定性の検討結果概要 (調査・解析の詳細は資料編に示す)

・潮流・吹送流による底質の巻き上げの可能性は低い

現地観測期間に覆砂した底質の安定に影響を与えるような底質の巻き上げや地盤高の変化は発生しなかった。大潮を含む期間に、流れによって底質の巻き上げや地盤高の変化が発生しなかったことから、<u>潮流が覆砂の巻上げの主要な外力である可能性は低いと考えられた</u>。また、比較的強い風のときに表層の吹送流とは逆方向の流れが底層においてみられたが、その流速は通常時と同程度の弱いものであったことから、<u>吹送流にともなう反流が覆砂の巻上げの主要な外力である可能性は低い</u>。

・波浪が底質の巻き上げの主要な外力である

波高 0.8m 程度でわずかに巻上げが確認され、波高 2m を超えるときに海底面上の表層 粒子がほとんど動き出す状態になると予測されることから、<u>底質の巻上げの主要な外力</u> <u>は波浪であると考えられる</u>。ただし、高波浪時の海浜流については、観測値が得られな かったため、それらが覆砂の安定性に与える影響を検討する必要がある。

底質の安定性

・大潮期の潮流による浸食等は起こらず、平常時には覆砂した底質は安定すると考えられた。 覆砂材移動の主要因は波浪であると考えられた。

課題

- ・波高 2m 以上の荒天時における底質の移動について調査が必要。
- ・高波浪時の海浜流に伴う底質の巻き上げについて調査が必要。

覆砂した地形の安定性の検討

覆砂した地形の安定性の検討にあたり、覆砂域の地形変化特性および外力特性を整理・ 把握するとともに、それらの特性を考慮した地形変化モデルを構築し、現況および将来に ついて地形変化計算を実施した。

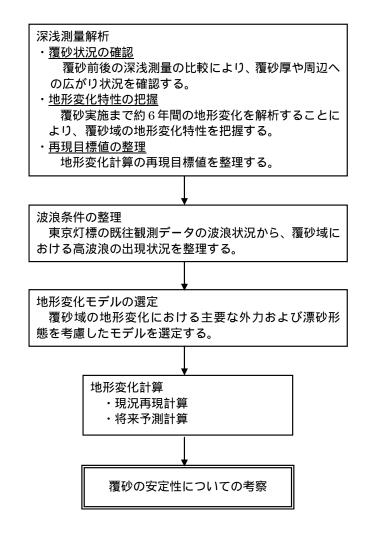


図 3-29 覆砂した地形の安定性についての検討手順(地形変化解析)

覆砂した地形の安定性の検討結果概要 (調査・解析の詳細は資料編に示す)

・地形変化解析

平成 11 年 9 月~平成 17 年 7 月(覆砂前)の約 6 年間における地形変化について、原地盤と推定される場所では変化がほとんどみられなかった。ただし人為的な地形である深掘部ではフラットに底質が堆積する傾向が強くみられ、現地調査の結果も併せ浮泥層であると確認された。覆砂域に当たる水深 5 ~ 8m の領域は平均で \pm 0.1m 程度の変化であった。

・覆砂面の変化

平成 17 年の覆砂は地形の起伏を保存するため一律 1m 層厚で実施され、覆砂域内は元の起伏が保存された。

・波浪条件

砂移動の主要因は波浪であり、潮流等の流れが底質を巻き上げることはないと考えられた(前述 1)覆砂した底質の安定性)。底質粒径と水深から、<u>地形が大きく変化する完全移動の状態は波高 3m 以上のときに限られ、10 年に 1 回程度の発生で 1983 年~2005年の最大有義波高は 3.28m と推定した。漂砂の移動が顕著になる表層移動状態は波高 2mで発生すると考えられた。</u>

・地形変化予測

予測モデルは、表層移動が主体であることから掃流砂が主要な移動形態と考えられ、 局所漂砂量モデルを採用した。再現目標は測量データが少ないこともあって広範囲にわ たる定量的な目標が立てられず、人為改変のみられない水深 2m ~ 5m 付近の変化に着目 し、代表地点を 3 箇所選定し計算した。

平成 17 年 8 月から平成 22 年 8 月の間の地形変化予測計算を実施した結果、覆砂領域における地盤高の変化は大きいところで 0.2m 程度であり、覆砂の規模から考えると小さいと判断でき、地形は維持される予測結果となった。

地形変化予測の精度は深浅測量の精度、頻度に依存し、今回の調査で利用できたのは 覆砂前2回の深浅測量成果と最低限のものであり、平成18年の覆砂完了後の測量結果から補正することが望まれる。

地形の安定性

・覆砂は波浪および流れの外力に対して長期的に安定が維持されると考えられた。

課題

・平成 18 年の覆砂完了後の測量結果から補正すること。

注)地形変化予測の計算に使用した深浅測量データは、平成 11 年および平成 17 年覆砂前の 2 回 (6 年)である。

環境調査結果の検討

覆砂後の環境調査を平成 17 年 10 月及び平成 18 年 2 月に実施し、当該海域の環境の概 況及び覆砂前後での変化を把握した。

表 3-17 環境調査項目

調査項目	調査目的
水質調査	海域概況の把握
方法 - 多項目水質計:鉛直観測	
項目 - 水深、水温、塩分、クロロフィル、濁度、溶存酸素	
<u>底質調査</u>	覆砂前後の変化
方法 - スミスマッキンタイヤ採泥器による表層泥採取	を調査し、覆砂に
項目 - COD、硫化物、強熱減量、粒度組成、酸化還元電位、含水比	よる環境改善効
底生生物調査	果の把握
方法 - スミスマッキンタイヤ採泥器による表層泥採取	
0.5mm 目合のふるい	
項目 - マクロベントス分析:同定、個体数、湿重量	
<u>溶出試験</u>	原地盤に相当す
目的 - 覆砂区域と原地盤を比較 溶出抑制効果の把握	る場所と覆砂域
方法 - 不攪乱柱状採泥サンプルを溶出実験装置にて調整し試料を分析	を比較し、覆砂に
項目 - 全窒素 (T - N)、全リン(T - P)、COD	よる環境改善効
	果の把握

覆砂した地形の安定性の検討結果概要(調査・解析の詳細は資料編に示す)

・水質調査

調査海域の西端は(調査点 No.13 付近)は江戸川河口に近く、表層の塩分はやや小さめであり、かつ塩分の変動が他の調査点よりも大きい傾向がある。

調査範囲には局所的に水深が深い箇所(調査点では、No.13、No.9、No.4)があるが、循環期には深堀部の底層(例えば、調査点 No.13)まで溶存酸素が供給されており、貧酸素が解消される期間があることがわかった。

・底質調査

a.覆砂域

覆砂施工前の状況と比較し、覆砂域の東半分(調査点 No.5,No.6)では、COD、硫化物、強熱減量等の減少(底質の改善)が認められた。また、原地盤の調査点 No.3 でも同様の傾向が認められた。一方、覆砂域内でも地盤高が低い場所(調査点 No.9)では、覆砂後に COD、硫化物、強熱減量等が増加しており、海底表層に浮泥が堆積していた。覆砂材上へ堆積した浮泥については、覆砂後に江戸川等から流入した懸濁物によるものと、覆砂時に原地盤に堆積していたシルト分が巻き上がった後に再度堆積したものとが考えられた。

b.覆砂域外

沖側の調査点 No.3 では、シルト・粘土分は少なく、底質の性状は覆砂域の調査点 No.5 に類似していた。 調査点 No.2 は、シルト・粘土分 $20 \sim 35\%$ 、COD5mg/g、強熱減量約 3%、硫化物約 0.3mg/g と、調査点 No.3 と比較して細粒分、有機物、硫化物ともにやや 多かった。全般に、水深が深くなるほど細粒分が多くなり、COD、強熱減量、硫化物も 多くなる傾向があった。

・底生生物調査

a.種類数・湿重量の推移

覆砂域の調査点のうち調査点 No.6 及び No.9 では、覆砂 2 ヶ月後の平成 17 年 10 月には種類数や湿重量が減少していたが、平成 18 年 2 月には、軟体動物の種類数や湿重量が増加し、生物相が回復してきていることが確認された。原地盤の調査点においてもこの間に種類数や湿重量が増加しているが、これと比較して覆砂域では軟体動物の種類数及び湿重量の増加が多い傾向があり、覆砂後に生物相が改善してきていると考えられた。

b.覆砂域(浅場)の生物相

底生生物の種類数や軟体動物の湿重量が多い調査点は覆砂域の調査点 No.5、No.6 及び原地盤域の調査点 No.2、No.3、No.12 であり、これらの調査点は砂分が比較的多い(50%)ところであった。二枚貝類については、サルボウガイ、ホトトギスガイ、ホンビノスガイ、マルスダレガイ科(この科にはアサリも含まれる。) チョノハナガイ、シズクガイ等が、調査点 No.5,No.6 等で確認された。なお、ホンビノスガイは、北米原産外来種であり、近年、東京湾奥部でも急速に増えてきている種である。

また、覆砂後の平成 18 年 2 月には、覆砂前には確認されていないトリガイが覆砂域で確認された。

c.覆砂域(窪地)の生物相

窪地 (調査点 No.9、No.13) では、底層が貧酸素状態の時期には底生生物は確認されないが、循環期に底層の貧酸素状態が解消されると、クシノハクモヒトデ、キセワタガイ、チョノハナガイが確認された。

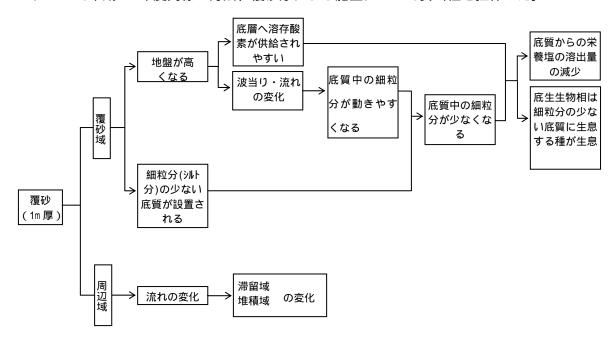
・溶出試験

溶出量及び溶出速度を覆砂区域と原地盤で比較すると、平成 17 年 10 月、平成 18 年 2 月ともに、48 時間までの範囲内では、全窒素 (T·N)、全リン (T·P)、COD ともに覆砂区域で小さかった。底質からの栄養塩の溶出は覆砂によって抑制されており、効果が覆砂後 6 ヶ月経過した時点において継続していることが確認された。

環境改善効果

- ・覆砂域の東半分では、COD、硫化物、強熱減量等の底質の改善が確認された。
- ・覆砂2ヶ月後には種類数や湿重量が減少していたが、平成18年2月には、軟体動物の 種類数や湿重量が増加し、生物相が回復してきていることが確認された。覆砂域外よ りも覆砂域の生物は多い傾向であった。
- ・底質からの栄養塩の溶出は覆砂によって抑制されており、効果が覆砂後 6 ヶ月経過した時点において継続していることが確認された。

課題


- ・覆砂域内でも地盤高が低い場所では、覆砂後に COD、硫化物、強熱減量等が増加。
- ・再堆積した浮泥は、覆砂後に江戸川等から流入した懸濁物によるものと、覆砂時に原 地盤に堆積していたシルト分が巻き上がった後に再度堆積したものとが考えられた。
- ・覆砂後の浮泥の再堆積が確認されたため、再堆積した浮泥が環境悪化につながるかど うかモニタリングにより検証すること。

覆砂施工により把握した効果

覆砂により期待される環境変化のフローを図 3-30 に示す。

覆砂によって地盤高が約1m高くなることにより、覆砂域では、底層へ酸素が供給されやすくなり、また浮泥等の細粒分が移動しやすくなるため、底生生物の生息場としてより適した環境になり、細粒分の少ない場に生息する生物種に生物相が変化する。覆砂域周辺では、地形の変化によって、やや停滞する海域が生じる可能性がある。

本調査では、覆砂 2 ヶ月後(平成 17 年 10 月)及び 6 ヶ月後(平成 18 年 2 月)に、環境の状況を確認するための調査を実施した。その結果、覆砂 6 ヶ月後の時点で覆砂した土砂が海底表層に留まっている海域(覆砂域の東寄り半分程度の範囲)では、底質からの溶出は覆砂以前と比較して抑制されていること、底生生物相は回復の傾向にあること、さらに、覆砂域周辺で漁獲対象となっているトリガイが確認されたこと等、覆砂による環境改善の効果を確認した。平成 17 年度の施工後の調査により環境改善効果が確認されたこと、また地形の安定性についての検証がなされたことから、平成 18 年度の工事について平成 17 年度同様の方法、覆砂厚による施工について妥当性を担保した。

出典:平成17年度東京湾奥地区環境管理調査報告書

図 3-30 覆砂により期待される環境変化のフロー

<参考資料>

- ・国土技術政策総合研究所データ(平成13年10~11月)
- ・平成 14 年度東京湾奥部海域環境創造事業検討調査報告書 平成 15 年 3 月 国土交通省関東地方整備局 千葉港湾事務所 財団法人港湾空間高度化環境研究センター
- ・平成 15 年度東京湾奥部海域環境創造事業検討調査報告書 平成 16 年 3 月 国土交通省関東地方整備局 千葉港湾事務所 財団法人港湾空間高度化環境研究センター
- ・平成 16 年度東京湾奥部海域環境創造事業検討調査報告書 平成 17 年 3 月 国土交通省関東地方整備局 千葉港湾事務所 財団法人港湾空間高度化環境研究センター
- ・平成 17 年度東京湾奥地区覆砂工事施工計画書 平成 17 年 6 月 東亜建設工業株式会社
- ・東京湾奥地区覆砂工事環境調査報告書 平成 17 年 8 月 東亜建設工業株式会社
- ・東京湾奥地区覆砂工事水質調査(SS・VSS)報告書 平成17年8月 東亜建設工業株式会社
- ・平成 17 年度東京湾口航路 (中ノ瀬航路) 浚渫工事 (その3)施工計画書 東洋・りんかい日産・国土総合特定建設工事共同企業体
- ・平成 18 年度東京湾奥地区覆砂工事施工計画書 平成 18 年 5 月 東亜建設工業株式会社
- ・国土交通省関東地方整備局東京湾口航路事務所ホームページ 過去の事業紹介 中ノ瀬航路浚渫 http://www.pa.ktr.mlit.go.jp/wankou/kako/index.htm
- ・平成 17 年度東京湾奥地区環境管理調査報告書 平成 18 年 3 月 国土交通省関東地方整備局千葉港湾事務所 国土環境株式会社

資料編

第3編 施工

(資)	図 3- 1	覆砂の施工管理について	1
(資)	図 3- 2	スクリーン網目寸法と覆砂能力の比較	2
(資)	表 3- 1	覆砂速度換算表	3
(資)	図 3- 3	覆砂船構造	3
(資)	表 3- 2 (1) 事前調査における水質調査結果	4
(資)	表 3- 2 (2) 事前調査における水質調査結果	5
(資)	表 3- 2 (。 3) 事前調査における水質調査結果	6
	•	- 事前調査における底質調査結果	
		事前調査における底生生物調査結果	
/			

出典

- ・平成 17 年度東京湾奥地区覆砂工事施工計画書 平成 17 年 6 月
- ·平成 17 年度東京湾奥地区覆砂工事環境調査報告書 平成 17 年 8 月

【覆砂の施工管理について】

1. 覆砂厚算定式

覆砂厚を設定する算定基本式を以下に示す。

パケット容量= 9.5m3(JIS容量) ⇒8.0m3(平積み容量):パケット係数0.84 歩留り= 土質性状(Fc) により、係数が変動 (土運船上にて土質状態を確認)

覆砂幅= 土質性状(Fc) により、出来形変動 (履砂幅10m股定

サイクルタイム= バックホウの土砂投入サイクル:スクリーン網目寸法により変動:45~55sec/回

移動速度= 覆砂船の自動操船速度(Vmax=5.0m/min):通常3.0m/min以下で設定

2. 覆砂船運転条件の仮設定と検証(施工初期段階での確認)

設定覆砂厚で出来形精度を確保するため、以下の項目について最適値を設定する。

(1) 覆砂材料(浚渫土) の土質性状: Fc値 ⇒覆砂幅・厚との相関

(2) トレミー管下端深度の設定 ⇒海底面での土砂の広がり:覆砂幅

(3) バケット容量×投入回数 ⇒投入土量の実績値(4) 土砂投入のサイクルタイム ⇒作業能力(m3/hr)

(5) 覆砂船の自動操船速度 ⇒レーンの出来形(直線性の確保)

(資)図3-1 覆砂の施工管理について

【スクリーン網目寸法変更に伴う覆砂能力の比較】

- 覆砂船運転条件共通-

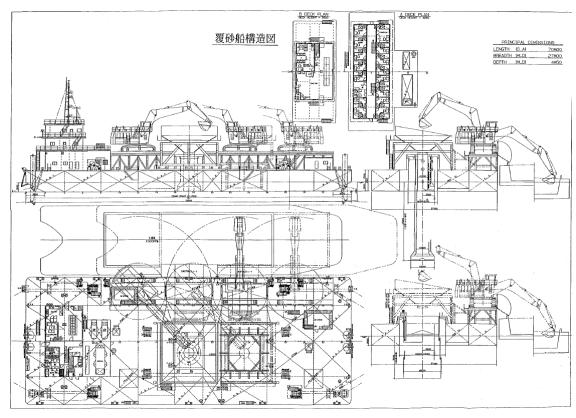
①バケット容量 (JIS容量: 9.5m3⇒平積み容量: 8.0m3)

②バケット係数 (上記平積み換算係数:0.842)

③目標覆砂厚:50cm:0.5m

④歩留り (0.5m⇒0.7m:0.720)

⑤1レーン走行時の覆砂幅出来形推定値(幅:10m)


【覆砂能力:スクリーン寸法□350×350】	【覆砂能力:スクリーン寸法□50×230】
1. バックホウの土砂投入サイクルタイム:35sec	1. バックホウの土砂投入サイクルタイム:45sec
2. 覆砂船運転速度:3.92m/sec	2. 覆砂船運転速度:1.52m/sec
(1)パックホウ揚土能力 (9.5m3積⇒平積8.0m3)	(1)パックホウ揚土能力(9.5m3積⇒平積8.0m3)
$Q = (3,600 \times q \times f \times E) \div Cm1 (m3/h)$	Q= $(3,600 \times q \times f \times E) \div Cm1 \pmod{m3/h}$
= $(3,600\times9.5\times1.0\times1.0\times0.65) \div 35$	$= (3,600 \times 8.0 \times 1.0 \times 1.0) \div 45$
= 635m3/h	= 640m3/h
Q2=635×2×(35÷40)÷1.13=983m3/h·2台	Q2=640÷1.13=566(m3/h·1台)
(2)バージ1隻あたり揚土時間の算定	(2)バージ1隻あたり揚土時間の算定
$H1 = (B \times 0.8) \div Q2 + 1/4 \div 2$	$H1 = (B \times 0.8) \div Q2 + 1/4 \div 2$
$= (1,300 \times 0.8) \div 983 \text{m} 3/\text{h} + 0.125$	$= (1,300 \times 0.8) \div 566 \text{m} 3/\text{h} + 0.125$
=1.183h	= 1. 962h
(3) 覆砂船転錯時間の算定	(3) 覆砂船転錯時間の算定
$H2 = (1,300 \times 0.8) \div V \times (h3 \times 4)$	$H2 = (1,300 \times 0.8) \div V \times (h3 \times 4)$
V: 覆砂区域1区画 (施工プロック) の覆砂土量	V: 覆砂区域1区画(施工プロック)の覆砂土量
: 150m×150m×0.5×1.4 (70cm/50cm) =15,750m3	: 150m×150m×0.5×1.40 (70cm/50cm) =15,750m3
$= (1,300\times0.8) \div 15,750\times (0.5\times4)$	$= (1,300\times0.8) \div15,750\times (0.5\times4)$
=0.132h	=0.132h
() () () () () () () () () ()	CO A STATE OF THE
(4)パージ1隻あたり覆砂時間の合計値	(4)パージ1隻あたり覆砂時間の合計値
H3=H1+H2 =1.183+0.132 =1.315h	H3=H1+H2 =1.962+0.132 =2.094h
(5) 覆砂できる土運船隻数の算定	(5) 覆砂できる土運船隻数の算定
(隻/1日:8時間運転)	(隻/1日:8時間運転)
N=8.0÷1.315 =6.08雙/日	N=8.0÷2.094 =3.82隻/日
(6) 1日あたり (運転:8時間) 覆砂可能土量	(6) 1日あたり (運転:8時間) 覆砂可能土量
$V1 = 1,300 \times 0.8 \times 6.08 = 6,323 \text{m}$	$V1 = 1,300 \times 0.8 \times 3.82 = 3,970m3$
	(7) 1日あたり (運転:10時間) 覆砂可能土量
	$V1' = 3,970 \text{m} 3 \times 10/8 = 4,962 \text{m} 3 = 5,000 \text{m} 3$

(資)図3-2 スクリーン網目寸法と覆砂能力の比較

(資)表3-1 覆砂速度換算表

平成17年度 覆砂速度換算表

バケット	平積容量((8.0m3)で	考慮	バケット	JIS容量	[m³]	9.5		覆砂幅	[m]	10.00		歩留まり)	1.00		(千鳥	沖覆砂	bバー:	ジョン	·)
									覆砂厚	[m]	1.0										_
「ケット	サイクル	Ь—						- 5	を留り想?	定(上段)/換算	覆砂厚	(下段)	[m							_
系数	タイム	-	_	_	_	-	_	_	_	_	_		_	_	_	_	_	_	_	_	
	[8]	0.0	0.20	0.22	0.24	0.26	0.28	0.30	0.31	0.32	0.35	0.40	0.45	0.50	0.55	0.60	0.70	0.80	0.90	1.00	_
0.84	120	-	2.00	1.82	1.67	1.54	1.43	1.33	1.29	1.25	1.14	1.00	0.89	0.80	0.73	0.67	0.57	0.50	0.44	0.40	
	115	-	2.09	1.90	1.74	1.61	1.49	1.39	1.35	1.30	1.19	1.04	0.93	0.83	0.76	0.70	0.60	0.52	0.46	0.42	Н
	110	-	2.18	1.98	1.82	1.68	1.56	1.45	1.41	1.36	1.25	1.09	0.97	0.87	0.79	0.73	0.62	0.55	0.48	0.44	
	105	_	2.29	2.08	1.90	1.76	1.63	1.52	1.47	1.43	1.31	1.14	1.02	0.91	0.83	0.76	0.69	0.57	0.51	0.46	
	95	_	2.53	2.18	2.11	1.94	1.80	1.68	1.63	1.58	1.44	1.26	1.12	1.01	0.92	0.84	0.69	0.60	0.56	0.48	
	90	_	2.67	2.42	2.22	2.05	1.90	1.78	1.72	1.67	1.52	1.33	1.19	1.07	0.97	0.89	0.76	0.67	0.59	0.53	
	85	_	2.82	2.57	2.35	2.17	2.02	1.88	1.82	1.76	1.61	1.41	1.25	1.13	1.03	0.94	0.70	0.71	0.63	0.56	Г
	80	_	3.00	2.73	2.50	2.31	2.14	2.00	1.94	1.87	1.71	1.50	1.33	1.20	1.09	1.00	0.86	0.75	0.67	0.60	Г
	75	_	3.20	2.91	2.67	2.46	2.29	2.13	2.06	2.00	1.83	1.60	1.42	1.28	1.16	1.07	0.91	0.80	0.71	0.64	Г
	70	_	3.43	3.12	2.86	2.64	2.45	2.29	2.21	2.14	1.96	1.71	1.52	1.37	1.25	1.14	0.98	0.86	0.76	0.69	
	65	_	3.69	3.36	3.08	2.84	2.64	2.46	2.38	2.31	2.11	1.85	1.64	1.48	1.34	1.23	1.05	0.92	0.82	0.74	
	60	-	4.00	3.64	3.33	3.08	2.86	2.67	2.58	2.50	2.29	2.00	1.78	1.60	1.45	1.33	1.14	1.00	0.89	0.80	Г
	55	-	4.36	3.97	3.64	3.36	3.12	2.91	2.81	2.73	2.49	2.18	1.94	1.75	1.59	1.45	1.25	1.09	0.97	0.87	Г
	50	ı	4.80	4.36	4.00	3.69	3.43	3.20	3.10	3.00	2.74	2.40	2.13	1.92	1.75	1.60	1.37	1.20	1.07	0.96	
	45	_	5.33	4.85	4.44	4.10	3.81	3.56	3.44	3.33	3.05	2.67	2.37	2.13	1.94	1.78	1.52	1.33	1.19	1.07	
	40	-	6.00	5.45	5.00	4.61	4.29	4.00	3.87	3.75	3.43	3.00	2.67	2.40	2.18	2.00	1.71	1.50	1.33	1.20	
	35	-	6.86	6.23	5.71	5.27	4.90	4.57	4.42	4.29	3.92	3.43	3.05	2.74	2.49	2.29	1.96	1.71	1.52	1.37	
	30	-	8.00	7.27	6.67	6.15	5.71	5.33	5.16	5.00	4.57	4.00	3.56	3.20	2.91	2.67	2.29	2.00	1.78	1.60	
	42	-	5.71	5.19	4.76	4.40	4.08	3.81	3.69	3.57	3.26	2.86	2.54	2.29	2.08	1.90	1.63	1.43	1.27	1.14	L
	40	_	6.00	5.45	5.00	4.61	4.29	4.00	3.87	3.75	3.43	3.00	2.67	2.40	2.18	2.00	1.71	1.50	1.33	1.20	

(資)図3-3 覆砂船構造

(資)表3-2(1) 事前調査における水質調査結果

地点名	採取深度	測定日	御定時刻	水深	pН	水温	獨度	90074h	DO	電気伝導率	塩分										
ARWYN NO.	TK-HKSKEE.	BUXE FI	MINENTAL	[m]	[-]	[°C]	[#6]	[µ g/L]	[mg/L]	[S/m]	[%]										
	0.5m		9:58		8.96	23.9	4.6	37	7.68	3.78	24,0										
	1.0m		10:03		8.31	23.9	5.7		7.57	3.87	24.										
	$2.0 \mathrm{m}$		10:05		8.30	23.9	5.6	-	7.21	3.94	25,2										
	3.0m		10:07		8.23	23.6	3.1		5.64	4.10	26.5										
環境 1	4.0m	H17.7.14	10:10	8.50	8.15	23.2	3.2	8.0	4.60	4.16	26.										
	5.0m		10:15		8.00	22.2	10.2		1.10	4.45	28.										
	6.0m		10:19		7.82	21.2	8.4		0.27	4.61	29.										
	7.0m		10:23		7.77	20.5	7.4		0.20	4.74	30.3										
	7.5m		10:27		7.75	19.9	7.2	2.7	0.22	4.75	30.										
	0.5m		12:38		8.32	24.0	1.8	47	8.12	3.80	24.										
	1.0m		12:42		8.31	24.0	1.1	-	7.40	3.87	24.										
	2.0m	H17.7.14	12:44 12:46 1 12:48		8.31	23.9	0.6	-	7.10	3.90	25.										
	$3.0 \mathrm{m}$			8.70	8.30	23.5	0.6		6.48	4.10	26.										
環境 2	4.0m				8.70	8.26	23.5	0.1	16	5.84	4.18	27.									
	5.0m		12:50		8.04	23.0	1.3		3.33	4.23	27.										
	6.0m		12:52		7.93	22.0	9.6	-	1.40	4.44	28.										
	7.0m		13:01												7.78	20.5	8.2		0.35	4.71	30.3
	7.7m		13:07		7.74	20.1	7.6	3.4	0.35	4.75	30.										
	0.5m		13:38		8.46	24,1	3.7	50	9.11	3.82	24.										
	1.0m			13:41		8.43	24.2	3.3		8.47	3.82	24.									
	2.0m		13:43			8.36	23.9	2.2		7.00	3.89	24.5									
環境3	3.0m	H17.7.14	18:45	6.60	8.33	23.9	2.4	22	6.72	3.90	25.										
	4.0m		13:47		8.18	23.1	2.5	-	3.76	4.23	27.										
	5.0m		13:50		8.07	22.5	1.8	-	1.41	4.37	28.										
	5.6m		13:56		7.96	22.3	1.8	8.4	1.33	4.41	28.4										

地点名	採取深度	測定日	測定時刻	水深	pН	水温	海底	\$11174A	DO	電気伝導率	塩分				
地州名	Sterific Oscille	MINE D	80人上10年30	[m]	[-]	[°C]	[度]	$[\mu g/L]$	[mg/L]	[S/m]	[%]				
	0.5m		14:25		8.45	24.5	3.3	59	9.07	3.77	24.1				
	1.0m		14:26		8.51	24.1	4.9	4	10.09	3.84	24.5				
環境 4	$2.0 \mathrm{m}$	H17.7.14	14:28	5.90	8.39	24.0	3.3	-	7.62	3.89	24.9				
58,9E 4	3.0m	H17.7.14	14:31	0.90	8.38	24.0	3.3	33	7.27	3.91	25.8				
	4.0m		14:33		8.12	23.1	3.3	-	2.88	4.25	27.5				
	$4.9 \mathrm{m}$		14:36		8.01	22.5	1.4	16	0.98	4.38	28.3				
	$0.5 \mathrm{m}$			15:03		8.47	24.5	9.4	63	8.53	3.81	24.4			
	1.0m		15:05		8.47	24.2	9.1	-	8.84	3.83	24.5				
	2.0m		15:08		8.36	23.9	8.3	-	6.32	3.92	25.1				
	3.0m		15:12		8.29	23.8	2.7	-	5.64	3.96	25.				
環境 5	4.0m	H17.7.14	15:16	9.00	9.00	9.00	9.00	9.00	8.28	23.5	1.5	8.4	5.44	4.19	27.0
	5.0m		15:21		8.04	22.8	2.2	-	3.21	4.27	27.8				
	6.0m		15:26		7.90	21.6	7.8	-	0.35	4.53	29.2				
	7.0m		15:29		7.81	20.5	10.6	-	0.11	4.68	30.4				
	8.0m		15:32	1	7.77	21.3	9.1	2.9	0.20	4.74	29.5				

(資)表3-2(2) 事前調査における水質調査結果

地点名	採取深度	測定日	測定時刻	水深	pH	水准	濁度	グロロフィル	DO	電気伝導率	塩分
78,03,45	採取研究	BUAL D	SOUTH MENSOR	[m]	[-]	[°C]	[度]	[µ g/L]	[mg/L]	[S/m]	[%]
	0.5m		8:52		8.05	24.0	4.2		8.58	3.48	21.9
	1.0m		8:54		8.08	23.8	2.0	-	9.00	3.62	23.0
	2.0m		8:56		8.08	23.3	1.8	-	7.81	3.94	25.2
	3.0m		8:59		7.99	23.0	4.0		3.95	4.24	27.4
環境・評価 1	4.0m	H17.7.15	9:02	9.30	7.84	22.0	2.6	-	1.97	4.47	28.9
28136 - U-181 T	5.0m	H17.7.15	9:04	9.a0	7.83	21.4	1.5		1.06	4.59	29.7
	$6.0 \mathrm{m}$		9:08		7.81	21.1	0.0	-	0.84	5.64	30.0
	$7.0 \mathrm{m}$		9:12		7.80	20.8	11.9		0.47	4.67	30.2
	8.0m		9:14		7.76	20.5	7.8		0.35	4.71	30.4
	8.3m		9:21		7.73	20.5	6.2		0.38	4.72	30.5
	0.5m		11:05	0.00	8.40	24.8	1.5	-	9.55	3.27	20.7
	1.0m		11:06		8.40	24.2	4.9		8.70	3.58	22.2
	$2.0 \mathrm{m}$		11:08		8.15	23.2	0.5	-	5.46	3.99	25.5
	3.0m		11:11		8.18	22.9	4.3	-	5.06	4.21	27.2
環境・評価2	4.0m	H17.7.15	11:14		8.00	22.5	2.7		2.48	4.35	28.2
36.95 · NT (0) 2	$5.0 \mathrm{m}$	H17.7.18	11:16	9.60	7.90	21.2	1.5	-	1.22	4.60	29.7
	$6.0 \mathrm{m}$		11:19		7.85	20.7	1.6		0.74	4.69	30.3
	7.0m		11:22		7.83	20.5	5.6	-	0.43	4.71	30.5
	$8.0 \mathrm{m}$		11:23		7.80	20.3	7.6		0.39	4.73	30.6
	8.6m		11:25		7.78	20.3	9.5		0.27	4.74	30.6
	0.5m		13:26		8.45	27.1	3.5		11.26	2.63	16.3
	1.0m		13:28		8.49	26.6	3.3	-	11.58	2.79	17.3
	$2.0 \mathrm{m}$		13:29		8.33	23.6	2.0		6.82	4.01	25.8
環境・評価3	$3.0 \mathrm{m}$	1110015	13:32	7.40	8.21	23.0	4.3	-	5.65	4.18	27.3
SWEET . MARKET 9	4.0m	H17.7.15	13:35	7.40	8.10	22.5	2.9		3.35	4.36	28.1
	$5.0 \mathrm{m}$	-	13:37		7.99	21.7	0.2		2,42	4.51	29.2
	6.0m		13:42		7.89	21.1	6.0	-	0.53	4.62	29.9
	6.4m		13:46		7.82	20.7	9.5		0.38	4.67	30.3

(資)表3-2(3) 事前調査における水質調査結果

	T			水梁	pH	水温	獨度	900741	DO	電気伝導率	塩分	
地点名	採取領度	測定日	測定時刻	[m]	(-)	[°C]	[旅]	[μg/L]	[mg/L]	[S/m]	[%]	
	0.5m		10:11		8.26	24.5	3.6		6.88		22.4	
	1.0m		10:14		8.15	23.6	2.4		5.32	3.76		
	2.0m	1	10:16		8.21	23.4	5.8	-	6.45	3.88	24.9	
	3.0m		10:19		7.98	22.6	1.9		1.80	4.37	28.0	
BG1	4.0m	H17.7.15	10:21	9.50	7.95	22.2	2.9	-	2.10	4.50	28.6	
DOL	5.0m	H17.7.10	10:24	9.00	7.93	21.5	1.5		2.00	4.57	29.5	
	$6.0 \mathrm{m}$		10:29		7.85	21.2	1.5	-	0.68	4.63	29.9	
	7.0m]	10:33		7.82	20.9	0.3		0.40	4.66	30.2	
	$8.0 \mathrm{m}$		10:35		7.77	20.5	4.7	-	0.32	4.69	30.4	
	8.5m		10:38		7.74	20.3	8.2		0.32	4.73	30.6	
	0.5m		12:34		8.49	25.1	5.8	-	11.57	3.30	20.1	
	1.0m		12:37		8.41	24.1	4.2	-	10.53	3.65	23.1	
	2.0m		12:39		8.39	23.7	2.6	-	11.61	4.01	25.8	
	$3.0 \mathrm{m}$		12:42		8.21	23.1	1.4	-	6.18	4.11	26.8	
	4.0m	H17.7.15	12:43		8.10	22.7	3.3	-	3.54	4.31	27.8	
BG2	5.0m		12:45	10.40	7.92	21.3	1.7	-	1.61	4.58	29.4	
	6.0m		12:48			7.94	21.0	0.6		3.32	4.65	30.0
	7.0m		12:49		7.93	20.8	0.0	-	2.51	4.68	30.1	
	8.0m		12:52		7.82	20.4	1.5		0.48	4.73	30.6	
	9.0m		12:59		7.74	19.9	6.2	-	0.21	4.76	30.8	
	9.4m		13:02		7.70	19.6	6.9		0.27	4.80	31.0	
	0.5m		14:52		8.54	26.7	7.0	-	12.25	2.76	17.3	
	$1.0 \mathrm{m}$		14:53		8.53	26.3	6.2		11.97	2.78	17.7	
	2.0m		14:55		8.29	23.5	3.8	-	6.31	4.04	25.7	
	3.0m		14:57		8.21	23.0	1.4		4.53	4.20	27.0	
BG3	4.0m	H17.7.15	15:00	8.30	8.07	22.5	3.6	-	2.96	4.37	28.2	
	5.0m		15:02		7.98	21.8	2.8	-	2.32	4.51	29.2	
	6.0m		15:03		7.90	21.0	9.9	-	0.93	4.62	30.0	
	7.0m		15:06		7.78	20.5	5.9		0.40	4.71	30.4	
	7.3m		15:07		7.76	20.4	4.1	-	0.31	4.73	30.6	

(資)表3-3 事前調査における底質調査結果

養項目	麗査地点	環境 1	環境 2	環境3	環境 4	環織 5	環境・評価1	環境・評価 2	環境・評価		
試料採用	6 年月日	H17. 7. 14	H17. 7. 14	H17. 7. 14	H17. 7. 14	H17. 7. 14	H17, 7, 15	H17, 7, 15	B17. 7. 1		
試料採	取時刻	10:38	13:17	14:05	14:46	15:50	9:38	11:36	14:03		
天 候	調査前日			曇り一時雨				雨のち曇り			
X 16	調査当日			雨のち曇り			時				
気 塩	調查前日			20.5°C~24.8°C			20.0℃~24.0℃				
26 SM	調査当日			20.0℃~24.0℃			26.7°C~29.7°C				
isel dels statutes.	調査前日			2			1				
風浪階級	調査当日			1			1				
水	梁	8, 50m	8. 70 m	6.60m	5. 90m	9.00m	9. 30 m.	9. 60m	7. 40m		
	泥質	シルト混じり砂	ヘドロ (シルト)	シルト品じり御砂	シルト親じり細砂	砂混じり締砂	砂混じりシルト	砂質シルト	砂質シル		
外 観	色調	黑色	黒色	熈色	黒茶色	里色	黑色	無色	黑色		
	夾雑物	貝殼片	貝酸片	貝殼片,貝	貝鼓片,貝	貝俊片,貝	貝徴片	なし	貝殼片。:		
臭	気	腐臭 微	腐臭 中	腐臭 微	無臭	腐臭 小	窩臭 中	腐臭中	腐臭		

測定項目及	CFHIGH:	COD	硫化物	酸化還元 電位	含水比	強熱減量
批料名	採取日	mg/g	mg/g	mV	%	96
操境 1	H17.7.14	6.4	0.2	-121	41.7	3.0
環境 2	H17.7.14	19.8	0.7	-173	198.4	13.0
環境 3	H17.7.14	7.0	0.2	161	52.0	4.4
環境 4	H17.7.14	6.7	0.2	+270	43.5	2.5
環境 5	H17.7.14	4.2	0.2	-155	50.4	2.3
環境・評価 1	H17.7.15	10.2	0.2	-8	71.8	4.7
規進・評価 2	H17.7.15	34.1	0.9	-162	165.1	8.9
環境・評価 3	H17.7.15	32.2	0.4	-187	95.1	7.9
定量下	TRA:	0.1	0.1	-	0.1	0.1

(資)表3-4 事前調査における底生生物調査結果

単 位:個体数,凝重量 g/m² 採泥面積:0.0675m²

						391.03					蒜	軸塩							環境	・評価		
青	Pil	284	B	释	学名			1		2		3 .		4	E	5	1	l		2	5	1
L						和名	個体數	凝重量	個体数	提重量	假体数	報重量	個体数	復重量	偏体数	髪重量	個体数	差重量	個体数	提重量	個体数	湿重量
1	ひも影動物	-	-	~	NEMERTINEA	ひも形動物門	15	0.15			30	0.15			15	0.00					15	0.15
2	軟体動物	マキガイ	=+	カリバガサガイ	Cropidula onyx	シマメノウフネガイ															15	0.30
3		ニマイガイ	フネガイ	フネガイ	Scepharea subcounsta	サルボウガイ	15	27.41			74	65.48			15	19.56					104	446.22
4			ハマグリ	マルスダレガイ	Messenaria mersenaria	ホンピノスガイ					15	32.30	44	126.07	15	59.26						
5					Phacosoms japonicum	カガミガイ							30	0.74								
6					Ruditapee philippinarum	アナリ							44	400.30								
7				ニッコウガイ	Macoma tokyoonsis	ゴイチギガイ															30	25,19
8	模型動物	ವರ್ಷ	サシバゴカイ	タンザクゴカイ	Chrysopetalidae	タンザラゴカイ料					15	0.00										
9				カギゴカイ	Signarben phuketensis	ケシカギゴカイ	1067	3.26	59	0.15	993	3.85	356	1.04	741	2.37			119	0.44	30	0.00
10				ゴカイ	Nectoneanthes latipoda	オウギゴカイ							15	0.30								
11				ニカイチロリ	Glycinde sp.								15	0.00								
12				シロガネゴカイ	Nephtys caeca	ハヤテシロガネゴカイ							15	0.80								
13			イソメ	マボシイソメ	Scoletoma longillidia	カタマガリギポシイソメ	15	0.15	44	1.04	30	0.44									193	5.04
14			スピオ	スピオ	Polydora sp.		59	0.15			30	0.15	15	0.00								
15					Paraprionospio sp. Type A.		18726	47.11	207	12.89	4830	31.11	1807	9.63	2148	26.37			1407	69.19	430	12.89
16					Prionospio pulchra	イトエラスピオ	30	0.00	59	0.00	222	0.15	59	0.00								
17					Spiophanas bombyn	エラナシスピオ							15	0.00								
18			イトゴカイ	イトゴカイ	Modiomastus ep.		296	0.30			163	0.15	119	0.15	30	0.00						
19			ケマキゴカイ	ケマキゴカイ	Owonia fusiformia	チマキゴカイ					59	0.89	44	1.19								
20			ケヤリ	ケヤリ	Chone up.																15	0.00
		出現陳原猷					8		4		11		13		6		_	_	2		8	
	슈 하						20223	78.53	369	14.08	6461	184.67	2578	539.72	2964	107.56	()	1526	69.63	832	489.79
20 ·	資金品の	重量の 0.00 は 0.01g 未満を示す。																				

注:湿重量の 0.00 は 0.01g 未満を示す。