資料一3<本編> 平成24年2月21日 環境監視委員会

暗環境における環境監視調査結果 ~暗環境におけるH22年度秋季~H23年度夏季調査結果の報告~

< 本 編 >

平成 24 年 2 月

国土交通省関東地方整備局 国土交通省東京航空局

一目 次一

第1章 暗環境調査の実施概要1	1
1-1 調査内容 1	1
1-2 調査地点 1	1
第 2 章 暗環境調査結果 2	2
2-1 水中照度 2	2
2-2 水質	3
2-3 底質4	1
2-4 付着生物 5	5
第3章 環境影響の評価案11	1

<資料編> 水質参考データ

底質参考データ

第1章 暗環境調査の実施概要

1-1 調査内容

暗環境に関する監視調査の実施状況は、表 1-1-1 に示すとおりである。

表 1-1-1 暗環境に関する調査の概要

調査名	区分	内容
水質調査		<一般項目(機器による現地観測)>
		水温、塩分、透明度、pH、濁度、DO、クロロフィル a
	測定・調査項目	<分析項目>
		塩分、SS、VSS、pH、DO、COD、n-ヘキサン抽出物質、T-N、T-P、クロ
		ロフィルa
	調査地点	3 地点
	調査頻度	4季を基本として生物の生息状況等を考慮して実施。
		秋季調査: 平成22年 11月26日
		冬季調査: 平成23年2月10日
	調査時期	春季調査: 平成23年5月19日
		夏季調査: 平成23 年 8 月 24 日
		秋季調査: 平成23年 11月17日
底質調査	測定・調査項目	<底質>
		粒度組成、COD、強熱減量、全硫化物、T-N、T-P
	調査地点	3地点
	調査頻度	4季を基本として生物の生息状況等を考慮して実施。
		秋季調査: 平成22年 11月26日
	⇒m- 4 -n-1-14-n	冬季調査: 平成23年2月23日
	調査時期	春季調査: 平成23年5月19日
		夏季調査:平成23年8月24日 秋季調査:平成23年11月17日
	測定・調査項目	(水学調査: 平成 25 平 11 月 17 日 生息・生育状況
刊有生物 調査	調査地点	3 地点
前1年.	.,	
	調査頻度	4季を基本として生物の生息状況等を考慮して実施。
		秋季調査: 平成 22 年 11 月 26 日
	調査時期	冬季調査: 平成23年2月23日 春季調査: 平成23年5月19日
	前道对别	夏季調査: 平成 23 年 8 月 24 日
水中照度調査	測定・調査項目	水中照度
八十二次凤山	調査地点	3 地点
	調査頻度	4季を基本とする。
	H/門.日.沙尺/又	秋季調査: 平成 22 年 11 月 26 日
		冬季調査: 平成 23 年 2 月 23 日
	 調査時期	春季調査: 平成 23 年 5 月 19 日
	Hud-Eds. (4.551	夏季調査:平成23年8月24日
		秋季調査: 平成 23 年 11 月 17 日

1-2 調査地点

暗環境に関する監視調査の調査地点は、図 1-2-1 に示すとおりである。

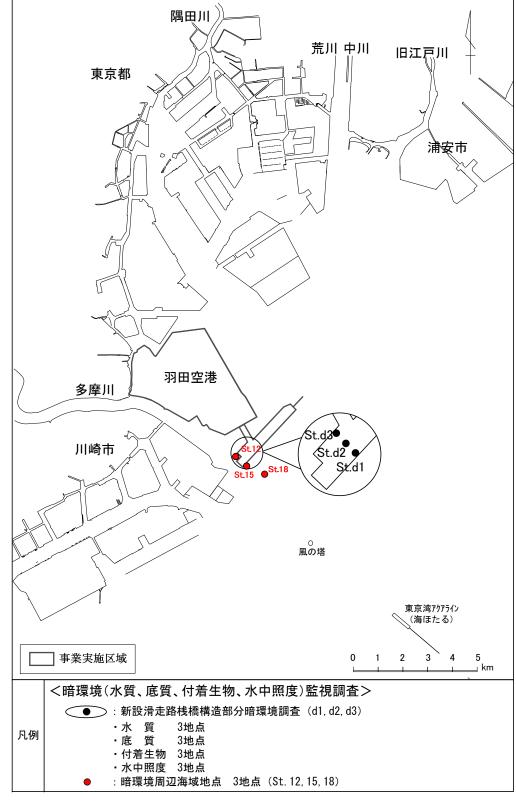


図 1-2-1 暗環境調査位置

第2章 暗環境調査結果

2-1 水中照度

平成22年度秋季(11月)、冬季(2月)、平成23年度春季(5月)、夏季(8月)、秋季(11月)に実施した暗環境における水中照度調査の結果は表2-1-1、図2-1-1に示すとおりである。

St. d1~d3 全ての地点、季節において、概ね水深-3m 以深で光があたらない環境となっており、暗環境が形成されていた。

表	2-1-1	暗環境における水中照度測定結果

地点				St. d1			St. d2				
調査時季		H22 秋季	H22 冬季	H23 春季	H23 夏季	H23 秋季	H22 秋季	H22 冬季	H23 春季	H23 夏季	H23 秋季
計測時刻		13:10	11:47	11:26	10:28	10:20	13:50	12:24	10:35	11:07	9:45
水中照度	0	2. 2	7. 9	1.5	11.9	14. 4	0.0	0.0	0.2	0.5	0.4
(光量子量	-1	0.0	6. 4	0.3	2. 5	5. 1	0.0	0.0	0.1	0.0	0.2
$\mu \mathrm{mol/m^2s})$	-2	0.0	2. 7	0.1	1.4	2.6	0.0	0.0	0.1	0.0	0. 1
	-3	0.0	1. 3	0.1	0.2	1.2	0.0	0.0	0.1	0.0	0.1
	-4	0.0	0.9	0.1	0.5	0.9	0.0	0.0	0.1	0.0	0. 1
	-5	0.0	0.0	0.1	0.0	0.7	0.0	0.0	0.1	0.0	0.0
	-6	0.0	0.0	0.1	0.0	0.5	0.0	0.0	0.1	0.0	0.0
	-7	0.0	0.0	0.1	0.0	0.3	0.0	0.0	0.1	0.0	0.0
	-8	0.0	0.0	0.1	0.0	0.3	0.0	0.0	0.1	0.0	0.0
	-9	0.0	0.0	0.1	0.0	0.2	0.0	0.0	0.1	0.0	0.0
	-10	0.0	0.0	0.1	0.0	0.2	0.0	0.0	0.1	0.0	0.0
透明度		2.4m	2. 1m	1.6m	1.6m	4.3m	1.6m	2.2m	1.4m	(0.9m)	(1.4m)
										()は暗環	()は暗環
備考										境での目	境での目
										視による	視による

地点				St. d3		
調査時季		H22 秋季	H22 冬季	H23 春季	H23 夏季	H23 秋季
計測時刻		14:20	13:03	9:25	9:48	8:56
水中照度	0	4.8	7.9	1.0	5. 5	11. 1
(光量子量	-1	2.1	4.2	0.1	1. 1	3. 0
$\mu\mathrm{mol/m2s})$	-2	0.0	2. 1	0.1	0.5	1. 2
	-3	0.0	1.4	0.1	0.0	0.6
	-4	0.0	0.8	0.1	0.0	0.4
	-5	0.0	0.0	0.1	0.0	0.3
	-6	0.0	0.0	0.1	0.0	0.2
	-7	0.0	0.0	0.1	0.0	0.2
	-8	0.0	0.0	0.1	0.0	0. 1
	-9	0.0	0.0	0.1	0.0	0. 1
	-10	0.0	0.0	0.1	0.0	0. 1
透明度	•	2. 3m	2.6m	1.4m	1.8m	3. 1m
備考	•					
20.0 a ==================================	- L-L	TOO TITE	T-1200 Fr			

注) 1. 調査実施日: H22 秋季: 平成22 年11 月26 日

H22 冬季: 平成 23 年 2 月 23 日 (※d4 の透明度は、2/25 測定値)

H23 春季: 平成23年5月28日 H23 夏季: 平成23年8月23日 H23 夏季: 平成23年11月17日

2. H23 秋季データは速報値である。

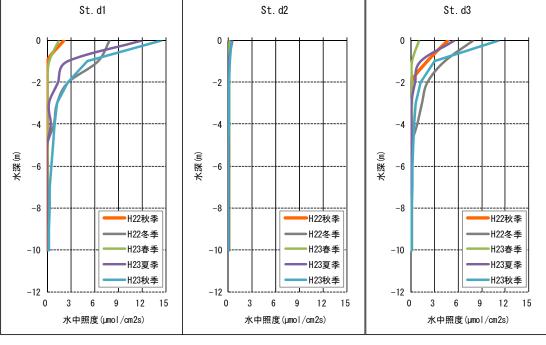


図 2-1-1 暗環境における水中照度測定結果

2

2-2 水質

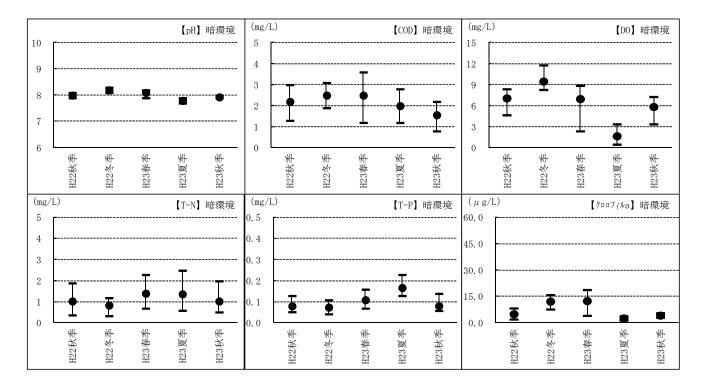
平成22年度秋季(11月)、冬季(2月)、平成23年度春季(5月)、夏季(8月)、秋季(11月)に実施した 暗環境及び暗環境周辺海域における水質調査の結果は表2-2-1、図2-2-1に示すとおりである。

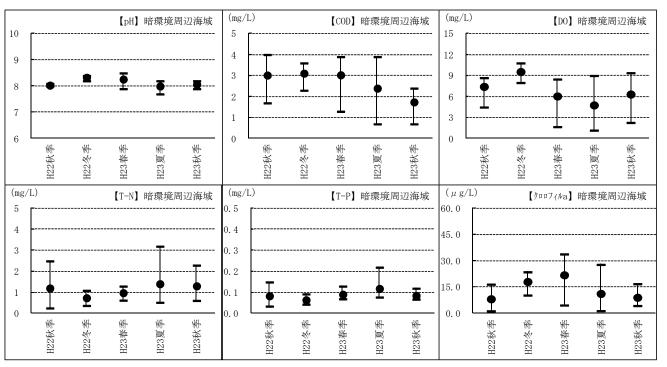
H22 年度秋季、冬季、H23 年度春季、夏季、秋季の季節変化は、D0 及びクロロフィル a を除く項目で概ね横ばい傾向であった。

特に D0 については、H23 年度夏季調査において暗環境の全地点全層で著しく低い値がみられたが、周辺海域では上層、中層において暗環境よりも比較的 D0 が維持されていたことから、夏場の暗環境での D0 低下による周辺海域への影響は無かったものと考えられる。(資料編「資-1~2 【水質参考データ】 資図-1~2 」参照)なお、同調査日前日の東京湾全域の底層 D0 の分布をみると、湾奥部全域で貧酸素の状態となっていた。(資料編「資-6 【水質参考データ】 資表-1 」参照)

なお、暗環境周辺海域における過去からの経年変化は、資料編「資-3~5【水質参考データ】 資図-3」に 示すとおりであり、全ての項目、地点において、工事前と比較して著しい変化は見られない。

以上より、暗環境での水質についてはDOが夏場に低下するとともに周辺海域と比較して低い状況であったことから、今後も継続的に経過を注視していく必要がある。


水垣	翃		暗環境				
調査	地点			St. d1∼d3			
調査	時期	H22 年度秋季	H22 年度冬季	H23 年度春季	H23 年度夏季	H23 年度秋季※	
рН	範囲	7.9~8.1	8.1~8.3	7.9~8.2	7.7~7.9	7.9~8.0	
	平均	8. 0	8. 2	8. 1	7.8	7. 9	
COD	範囲	1.3~3.0	1.9~3.1	1.2~3.6	1.2~2.8	0.8~2.2	
(mg/L)	平均	2. 2	2. 5	2. 5	2.0	1.6	
DO	範囲	4.7~8.4	8.3~11.8	2.4~8.9	0.5~3.4	3.4~7.3	
(mg/L)	平均	7. 1	9. 5	7. 0	1. 7	5. 9	
T-N	範囲	0.38~1.90	0.34~1.20	0.7~2.3	0.60~2.50	0.52~2.00	
(mg/L)	平均	1.04	0.85	1.41	1. 38	1.04	
T-P	範囲	0.053~0.130	0.043~0.110	0. 070~0. 160	0. 130~0. 230	0.059~0.140	
(mg/L)	平均	0.081	0. 075	0.11	0. 168	0.082	
クロロフィル a	範囲	2.2~8.5	7. 9~16. 1	4.3~19	1.6~4.0	3.2~5.8	
$(\mu \text{ g/L})$	平均	5. 2	12. 4	12. 7	2.8	4. 4	


表 2-2-1 暗環境及び暗環境周辺における水質分析結果(値の範囲、平均)

水域別				暗環境周辺海域			
調査	地点			St. 12, 15, 18			
調査	時期	H22 年度秋季	H22 年度冬季	H23 年度春季	H23 年度夏季	H23 年度秋季※	
рН	範囲	8.0~8.1	8.2~8.4	7.9~8.5	7.7~8.2	7.9~8.2	
	平均	8	8. 3	8.3	8	8. 1	
COD	範囲	1.7~4.0	2.3~3.6	1.3~3.9	0.7~3.9	0.7~2.4	
(mg/L)	平均	3. 2	3. 1	3	2. 4	1. 7	
DO	範囲	4.5~8.7	8.0~10.8	1.7~8.5	1.2~9.0	2.3~9.4	
(mg/L)	平均	7. 4	9. 6	6. 1	4.8	6. 4	
T-N	範囲	0. 26~2. 50	0.38~1.10	0.63~1.30	0.53~3.20	0.62~2.30	
(mg/L)	平均	1.21	0. 75	0.99	1.42	1. 31	
T-P	範囲	0.035~0.150	0.044~0.093	0.070~0.130	0.078~0.220	0.068~0.120	
(mg/L)	平均	0. 084	0. 065	0. 091	0. 119	0. 086	
クロロフィル a	範囲	1.5~16.7	10.5~23.8	4.8~34.0	1.6~28.0	4.5~17.0	
$(\mu \text{ g/L})$	平均	8. 4	18. 3	22. 1	11.4	9. 2	

注) 1. 採水実施日:

暗環境;平成22年11月24日、平成23年2月10日、平成23年5月23日、平成23年8月24日、平成23年11月17日 暗環境周辺海域;平成22年11月18日、平成23年2月8日、平成23年5月23日、平成23年8月3日、平成23年11月14日 2. H23年度秋季データは速報値である。

注) H23 年度秋季データは速報値である。

図 2-2-1 暗環境及び暗環境周辺における水質の季節変化

2-3 底質

平成22年度秋季(11月)、冬季(2月)、平成23年度春季(5月)、夏季(8月)、秋季(11月)に実施した 暗環境及び暗環境周辺海域における底質調査の結果は表 2-3-1、図 2-3-1 に示すとおりである。

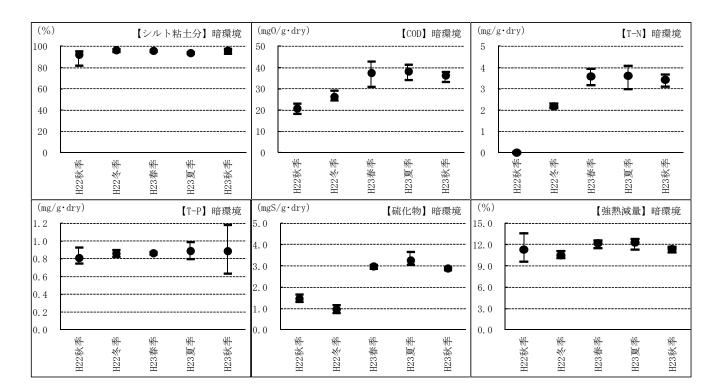
暗環境における底質については、H22年度秋季、冬季、H23年度春季、夏季、秋季を比較すると、H23年度春 季以降に COD、硫化物が高い値となっていた。

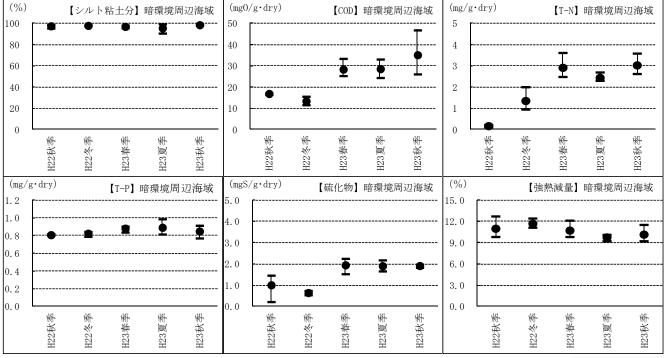
また、暗環境と暗環境周辺海域を比較すると、両海域ともに春季から秋季にかけて COD 及び硫化物が高い状 況がみられており、平均値は暗環境がやや高い値を示していた。

暗環境における底質環境については、H23 年度秋季までの調査結果によると COD 及び硫化物が上昇傾向にあ り、周辺と比較しても値がやや高い状況であることから、今後、冬季以降の監視調査結果について経過を注視 していく必要がある。

なお、暗環境周辺海域における過去からの経年変化は、資料編「資-8 【底質参考データ】 資図-4」に示 すとおりであり、St. 18 の COD が工事前と比較して供用後にやや高い値が見られた以外は、全ての項目、地点 において、ほぼ横ばいの変動傾向を示していた。

水域	IJ	暗環境				
調査地	点	St. d1∼d3				
調査時	期	H22 年度秋季	H22 年度冬季	H23 年度春季	H23 年度夏季	H23 年度秋季※
シルト	範囲	82. 3~95. 8	95.1~97.8	95. 2~96. 7	93. 2~95. 0	93.5~98.1
・粘土分(%)	平均	92. 5	96.8	96. 2	94. 1	96. 3
CODsed	範囲	18. 5~23. 3	24.8~29.4	31. 2~43. 1	34.4~41.6	33.5~38.2
(mgO/g·dry)	平均	21. 0	26. 5	37. 7	38. 4	36. 5
T-N	範囲	<0.01~0.06	2. 12~2. 34	3. 23~3. 97	3.01~4.11	3. 13~3. 70
(mg/g·dry)	平均	<0.03	2. 20	3. 61	3. 64	3. 45
T-P	範囲	0.755~0.935	0.830~0.907	0.856~0.886	0.805~0.997	0.641~1.190
(mg/g·dry)	平均	0.817	0.867	0.871	0.896	0.894
硫化物	範囲	1.34~1.69	0.82~1.19	2.90~3.08	3.09~3.69	2.83~3.00
(mgS/g·dry)	平均	1.49	0.99	3. 01	3. 29	2. 91
強熱減量	範囲	9. 7 ∼ 13. 7	10.2~11.2	11.6~12.7	11.4~12.9	11.0~11.8
(%)	平均	11. 4	10.6	12. 3	12. 4	11.5


表 2-3-1 暗環境及び暗環境周辺における底質分析結果(値の範囲、平均)


(/0)	720	11. 4	10.0	12. 0	12. 4	11. 0
水域別						
調査地	点			St. 12, 15, 18		
調査時	期	H22 年度秋季	H22 年度冬季	H23 年度春季	H23 年度夏季	H23 年度秋季※
シルト	範囲	95.5~98.9	97.6~98.6	95.8~98.3	90.8~99.5	98.2~99.5
• 粘土分(%)	平均	97. 6	98. 0	97. 1	95. 7	98. 7
CODsed	範囲	16.6~17.3	11.7~15.7	25.4~33.5	24.5~33.2	26. 2~46. 9
(mgO/g·dry)	平均	17. 0	13. 5	28. 5	28. 7	35. 2
T-N	範囲	0.14~0.24	0.97~2.02	2.50~3.63	2. 32~2. 71	2. 64~3. 60
(mg/g·dry)	平均	0. 19	1. 37	2. 93	2.46	3. 04
T-P	範囲	0.804~0.824	0. 793~0. 849	0.841~0.909	0.820~0.992	0.775~0.919
(mg/g·dry)	平均	0.813	0.828	0.886	0.896	0.854
硫化物	範囲	0. 24~1. 48	0.56~0.76	1.55~2.27	1.68~2.20	1.85~2.00
(mgS/g·dry)	平均	1.03	0.66	1. 97	1. 92	1. 93
強熱減量	範囲	9.9~12.8	11.2~12.5	9.9~12.2	9.3~10.2	9.3~11.6
(%)	平均	11. 1	11.8	10.8	9.8	10. 2

注) 1. 採泥実施日:

暗環境 平成 22 年 11 月 26 日、平成 23 年 2 月 10 日、平成 23 年 5 月 19 日、平成 23 年 8 月 24 日、平成 23 年 11 月 17 日 暗環境周辺海域 平成 22 年 11 月 17 日、平成 23 年 2 月 3 日、平成 23 年 5 月 24 日、平成 23 年 8 月 24 日、平成 23 年 11 月 15 日 2. H23 年度秋季データは速報値である。

参考) 底質に関する水産用水基準 : CODsed ; 20 mgO/g·dry 硫化物 ; 0.2 mgS/g·dry

注) H23 年度秋季データは速報値である。

図 2-3-1 暗環境及び暗環境周辺における底質の季節変化

参考表 2-3-2 暗環境及び暗環境周辺における水質、底質の変化率の比較

<水質の変化率の比較>

		暗環	境(St. d1~d3)		周辺海	域(St. 12, 15, 18)	
		H22 秋季, 冬季 平均	H23 春季, 夏季 平均	変化率 (倍)	H22 秋季, 冬季 平均	H23 春季, 夏季 平均	変化率 (倍)
рН	(-)	8. 1	7. 95	0. 98	8. 15	8. 15	1.00
COD	(mg/L)	2. 35	2. 25	0.96	3. 15	2. 7	0.86
DO	(mg/L)	8.3	4. 35	0. 52	8. 5	5. 45	0.64
T-N	(mg/L)	0. 945	1. 395	1.48	0. 98	1. 205	1. 23
T-P	(mg/L)	0.078	0. 139	1. 78	0. 0745	0. 105	1.41
วบบวา/wa	(μg/L)	8.8	7. 75	0.88	13. 35	16. 75	1. 25

<底質の変化率の比較>

		暗環	境(St. d1~d3)		周辺海	域(St. 12, 15, 18)	
		H22 秋季, 冬季 平均	H23 春季, 夏季 平均	変化率 (倍)	H22 秋季, 冬季 平均	H23 春季, 夏季 平均	変化率 (倍)
シルト・粘土分	(%)	94. 7	95. 2	1. 01	97.8	96. 4	0. 99
CODsed	$(mg0/g \cdot dry)$	23.8	38. 1	1.60	15. 3	28. 6	1.88
T-N	(mg/g·dry)	2. 20	3. 63	1.65	0. 78	2. 70	3. 46
T-P	(mg/g·dry)	0. 842	0. 884	1.05	0.821	0.891	1. 09
硫化物	(mgS/g·dry)	1. 24	3. 15	2. 54	0.85	1. 95	2. 30
強熱減量	(%)	11.0	12.4	1. 12	11.5	10.3	0. 90

注)変化率は、「H23 年度春季, 夏季平均値」÷「H22 年度秋季, 冬季平均値」により算出した。

2-4 付着生物

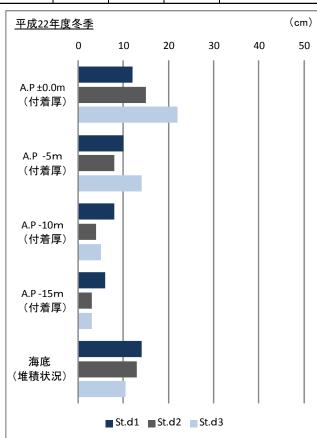
平成22年度秋季(11月)、冬季(2月)、平成23年度春季(5月)、夏季(8月)、秋季(11月)に実施した 暗環境における付着生物調査の結果は表2-4-1に示すとおりである。

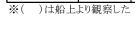
付着生物の生息状況(優占種)については、H22年度秋季、冬季、H23年度春季、夏季、秋季ともに、水面付近にはムラサキイガイ、ミドリイガイ、フジツボ類(タテジマフジツボやシロスジフジツボ)がみられ、水面付近から下方に向かって、ミドリイガイやカンザシゴカイ科が多くみられた。A.P-5.0m以深では、イソギンチャク目、カタユウレイボヤが多く見られた。

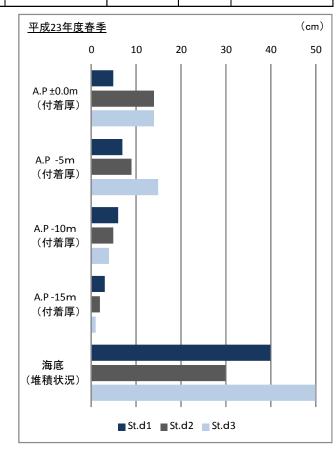
付着生物の付着層厚については、H22 年度秋季、冬季、H23 年度春季、夏季ともに全地点で潮間帯及び A. P-5. 0 m~全水深 1/2 の水深帯に多く付着する傾向であった。季節変化については、明確な差異はみられなかった。付着生物の堆積厚については、H22 年度冬季と比較して、H23 年度春季、夏季が全地点で増加していた。

H23 年度春季、夏季の水質調査結果(【資料編「資-1~2 【水質参考データ】 資図-1~2 」参照)によると、中層、下層において貧酸素状態となっていたことから、夏場の貧酸素により付着生物が死滅・脱落した可能性も考えられる。

5

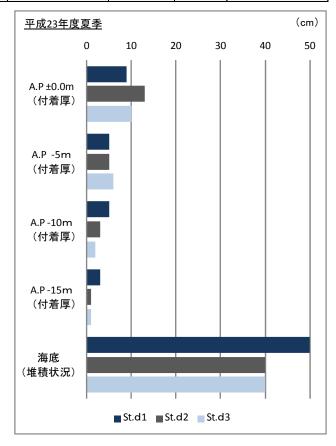

表 2-4-1(1) 暗環境における付着生物目視確認結果(平成22年度秋季~平成23年度春季)

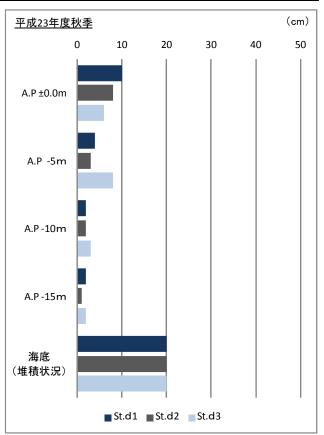

[付着•堆積状況計測結果]


平成22年度 秋季調査地点	季水中観察結果 全地点
平成22年11月26日 観察水深	付着生物優占種
$A.\textrm{P}~\pm 0.0\textrm{m}$	ムラサキイガイ ミドリイガイ シロボヤ
A.P -5m	ミドリイガイシロボヤ
A.P -10m	カンザシゴカイ (棲管) カタユウレイボヤ
A.P -15m	カンザシゴカイ(棲管)
海底 (堆積状況)	杭のそばに付着生物の死 骸等(貝殻等)が堆積

	平成22年度 冬季水中観察結果								
調査地点	St.d1	St.d2	St.d3	全地点					
	平成23年2	月23日							
観察水深	付着	賃・堆積厚さ((cm)	付着生物優占種					
A.P ±0.0m (付着厚)	12	15	22	ムラサキイガイ ミドリイガイ(貝殻) シロボヤ					
A.P -5m (付着厚)	10	8	14	ミドリイガイ カタユウレイボヤ ヒドロ虫類					
A.P -10m (付着厚)	8	4	5	ムラサキイガイ カンザシゴカイ科(棲管)					
A.P -15m (付着厚)	6	3	3	カンザシゴカイ (棲管) ヒドロ虫類					
海底 (堆積状況)	14	13	11	杭のそばにミドリイガイや ムラサキイガイの貝殻が多 く落ちていた					

平成23年度 春季水中観察結果									
調査地	1点	St.d1	調査地	点	St.d2	調査地点		St.d3	
平成23年5	月19日	10:20~11:00	平成23年5	月19日	13:40~14:20	平成23年5	月19日	12:40~13:20	
観察水深	付着・堆積厚 さ(cm)	付着生物優占種	観察水深	付着・堆積厚 さ(cm)	付着生物優占種	観察水深	付着・堆積厚 さ(cm)	付着生物優占種	
A.P ±0.0m (付着厚)	5	ムラサキイガイ ミドリイガイ キヌマトイガイ	A.P ±0.0m	14	ムラサキイガイ	A.P ±0.0m	14	ムラサキイガイ イソカイメン科	
A.P -5m (付着厚)	7	ムラサキイガイ カタユウレイボヤ イソギンチャク目	A.P -5m	9	カタユウレイボヤ ムラサキイガイ イソギンチャク目	A.P -5m	15	カタユウレイボヤ イタボガキ科 シロボヤ イソギンチャク目	
A.P -10m (付着厚)	6	カタユウレイボヤ ムラサキイガイ イソギンチャク目 カンザシゴカイ科	A.P -10m		カンザシゴカイ科 カタユウレイボヤ イソギンチャク目 ムラサキイガイ マナマコ	A.P -10m	4	カンザシゴカイ科 カタユウレイボヤ	
A.P -15m (付着厚)	3	カンザシゴカイ科 単体ホヤ	A.P -15m	2	カンザシゴカイ科 単体ホヤ マナマコ イッカククモガニ	A.P -15m	1	カタユウレイボヤ カンザシゴカイ科	
海底 (堆積状況)	40		海底 (堆積状況)	30		海底 (堆積状況)	50		




表 2-4-1(2) 暗環境における付着生物目視確認結果(平成23年度夏季~秋季(速報))

[付着•堆積状況計測結果]

	平成23年度 夏季水中観察結果								
調査均	也点	St.d1	調査地点		St.d2	調査地点		St.d3	
平成23年8	3月24日	9:10~9:50	平成23年8	3月24日	13:40~14:20	平成23年8	3月24日	12:40~13:20	
観察水深	付着・堆積厚 さ(cm)	付着生物優占種	観察水深	付着・堆積厚 さ(cm)	付着生物優占種	観察水深	付着・堆積厚 さ(cm)	付着生物優占種	
A.P ±0.0m (付着厚)	9	ムラサキイガイ ミドリイガイ イソギンチャク目 ヨーロッパフジツボ	A.P ±0.0m	13	ムラサキイガイ ミドリイガイ イソギンチャク目 ヨーロッパフジツボ	A.P ±0.0m	10	ムラサキイガイ ミドリイガイ イソギンチャク目 ヨーロッパフジツボ	
A.P -5m (付着厚)	5	ムラサキイガイ イソギンチャク目 カタユウレイボヤ ミドリイガイ	A.P -5m	5	ムラサキイガイ イソギンチャク目 カタユウレイボヤ シロボヤ	A.P -5m	6	カタユウレイボヤ ムラサキイガイ イソギンチャク目 カンザシゴカイ科	
A.P -10m (付着厚)	5	カタユウレイボヤ ムラサキイガイ イソギンチャク目 カンザシゴカイ科	A.P -10m	3	カンザシゴカイ科 カタユウレイボヤ イソギンチャク目	A.P -10m	2	カタユウレイボヤ カンザシゴカイ科	
A.P -15m (付着厚)	3	カンザシゴカイ科 単体ホヤ	A.P -15m	1	カンザシゴカイ科 単体ホヤ イソギンチャク目	A.P -15m	1	カタユウレイボヤ カンザシゴカイ科	
海底 (堆積状況)	50		海底(堆積状況)	40		海底 (堆積状況)	40		

	平成23年度 秋季水中観察結果								
調査均	也点	St.d1	調査均	也点	St.d2	調査地	也点	St.d3	
平成23年1	1月17日	9:00~10:00	平成23年1	1月17日	10:05~11:15	平成23年1	1月17日	11:20~12:15	
観察水深	付着・堆積厚 さ(cm)	付着生物優占種	観察水深	付着・堆積厚 さ(cm)	付着生物優占種	観察水深	付着・堆積厚 さ(cm)	付着生物優占種	
A.P ±0.0m	10	ムラサキイガイ マガキ イソギンチャク目 ヨーロッパフジツボ	A.P ±0.0m	8	ムラサキイガイ ミドリイガイ ヨーロッパフジツボ イソギンチャク	A.P ±0.0m		ムラサキイガイ ヨーロッパフジツボ イソギンチャク目	
A.P -5m	4	カンザシゴカイ科 コケムシ イソギンチャク目 ムラサキイガイ	A.P -5m	3	カンザシゴカイ科 イソギンチャク目 コケムシ	A.P =5m		シロボヤ カタユウレイボヤ カンザシゴカイ科 マガキ	
A.P -10m	2	カンザシゴカイ科 イソギンチャク目 シロボヤ	A.P =10m	2	カンザシゴカイ科 コケムシ イソギンチャク目	A.P =10m	3	カンザシゴカイ科 イソギンチャク目	
A.P =15m	2	カンザシゴカイ科 イソギンチャク目	A.P -15m	1	カンザシゴカイ科 コケムシ	A.P -15m	2	カンザシゴカイ科 イソギンチャク目	
海底 (堆積状況)	20		海底 (堆積状況)	20		海底 (堆積状況)	20		

表 2-4-1(3) 暗環境における付着生物目視確認結果(平成23年度夏季~秋季(速報))

<St. d1>

層別	H22 年度秋季	H22 年度冬季	H23 年度春季	H23 年度夏季	H23 年度秋季(速報)
A. P. ±0m	dl Om	dl Om	d1-0	d1 A.P ±0.0m	d1 A.P ±0.0m
A. P5m	d1 5m	a1 5m	d1-5	d1 A.P -5m	dl A.P -5m
A. P10m	dl 10m	d1 10m	d1-10	dl A.P-10m	dl A.P -10m
A. P15m	d1 15m	d1 15m	d1-15	d1 A.P15m	d1 A.P -15m
海底付近					

表 2-4-1(4) 暗環境における付着生物目視確認結果(平成23年度夏季~秋季(速報))

<St. d2>

層別	H22 年度秋季	H22 年度冬季	H23 年度春季	H23 年度夏季	H23 年度秋季(速報)
A. P. ±0m	d 2. Om	d2 0m	a = 0	d2 A.P ±0.00	d2 A.P ±0.0m
A. P5m	12.5m	a2 5m	d 2 - 5	d2 A.P -5m	d2 A.P -5m
A. P10m	d2 10m	d2 10m	d 2 - 10	d2 A.P = 10m	d2 A.P-10m
A. P15m	d2 15m	d2 15m	d2-15	d2 A.P -15n	d2 A.P -15m
海底付近					

表 2-4-1(5) 暗環境における付着生物目視確認結果(平成23年度夏季~秋季(速報))

<St. d3>

層別	H22 年度秋季	H22 年度冬季	H23 年度春季	H23 年度夏季	H23 年度秋季(速報)
A. P. ±0m	d3 Om	d3 0m	$\frac{d}{d} = 0$	(d3) A.P ±0.0m	d3 A,P ±0.0m
A. P5m	d3 5m	d3 5m	d 3-5	(d3. A.P -5m	d3 A.P -5m
A. P10m	d 3 10m	d3 10n	d 3 - 1 0	d3. A.P -10m	d3 A.P-10m
A. P15m	d3 15m	d3 15m	ds-15	d3 A.P -15m	d3 - A.P. 16m
海底付近					

第3章 環境影響の評価案

暗環境における監視項目と環境管理目標(監視基準)及び監視結果は表 2-4-1 に示すとおりであり、存在・供用時の環境監視結果について環境影響の評価を行った結果、底質、付着生物(桟橋下部の堆積厚)については、今後、継続的に調査を実施し、経過を注視していく必要があると考えられた。

表 2-4-1 暗環境における環境管理目標(監視基準)及び環境監視結果

監視項目	環境管理目標	監視結果
水中照度	•環境影響評価時の現	桟橋下の全地点 (St. d1~d3) において、概ね水深-3m 以深で光が
	況調査結果と比較し	当たらない環境となっており、暗環境が形成されていた。特に、桟
	て著しい変化がみら	橋部の中央に位置する St.d2 では、水深-1m 以深で暗環境となって
	れないこと	いたことから、桟橋下では、日中もほとんど光が当たらない環境と
		なっていると考えられる。
水質		桟橋下(暗環境)の地点(St.d1~d3)では、H23年度夏季におい
		て中層~下層のDOが低く貧酸素の状態が確認されたが、周辺では、
		環境影響評価時と供用後を比較すると、全ての項目、地点で、ほぼ
		横ばいの傾向であったことから、周辺への影響はみられていない。
		よって、桟橋下(暗環境)でのDOについては、夏場に低下すると
		ともに周辺と比較して低い状況が見られたことから、今後も継続的
	_	に経過を注視していく必要がある。
底質		桟橋下(暗環境)と暗環境周辺を比較すると、COD 及び硫化物が
		暗環境においてやや高い状況であった。
		暗環境における底質環境については、H23 年度秋季までの調査結
		果によると COD 及び硫化物が上昇傾向にあり、周辺と比較しても値
		がやや高い状況であった。
		また、周辺の底質環境について、環境影響評価時と供用後を比較
		すると、St. 18 において COD が上昇傾向となっており、その他の項
		目、地点では、ほぼ横ばいの傾向であった。
		よって、桟橋下(暗環境)の底質については、COD、硫化物に変化
		がみられることから、周辺も含めて、今後も継続的に経過を注視し
		ていく必要がある。
付着生物		付着生物の生息状況(優占種)については、H22年度秋季、冬季、
		H23 年度春季、夏季、秋季ともに、水面付近にはムラサキイガイ、
		ミドリイガイ、フジツボ類 (タテジマフジツボやシロスジフジツボ)
		等がみられ、水面付近から下方に向かって、ミドリイガイやカンザ
		シゴカイ科が多くみられた。A. P-5. 0m以深では、イソギンチャク目、
		カタユウレイボヤが多く見られた。
		付着生物の付着層厚については、H22年度秋季、冬季、H23年度春
		季、夏季ともに全地点で潮間帯及び A. P-5. 0m~全水深 1/2 の水深 #1/2 タイパー カース (4) オース (5) オー
		帯に多く付着する傾向であった。季節変化については、明確な差異
		はみられなかった。
		付着生物の堆積厚については、H22 年度冬季と比較して、H23 年度
		春季、夏季が全地点で増加していた。
		以上より、桟橋に付着する生物については、種構成の特異的な変化や、生息量の変化は見られないが、桟橋下の堆積物の量は、春季、
		12~、生息量の変化は見られないが、機構下の準値物の重は、春学、 夏季を中心に増加する傾向がみられているため、今後も継続的に経
		過を注視していく必要がある。

出典)環境管理目標は「東京国際空港再拡張事業に係る環境監視計画 存在・供用時」より引用

1 1