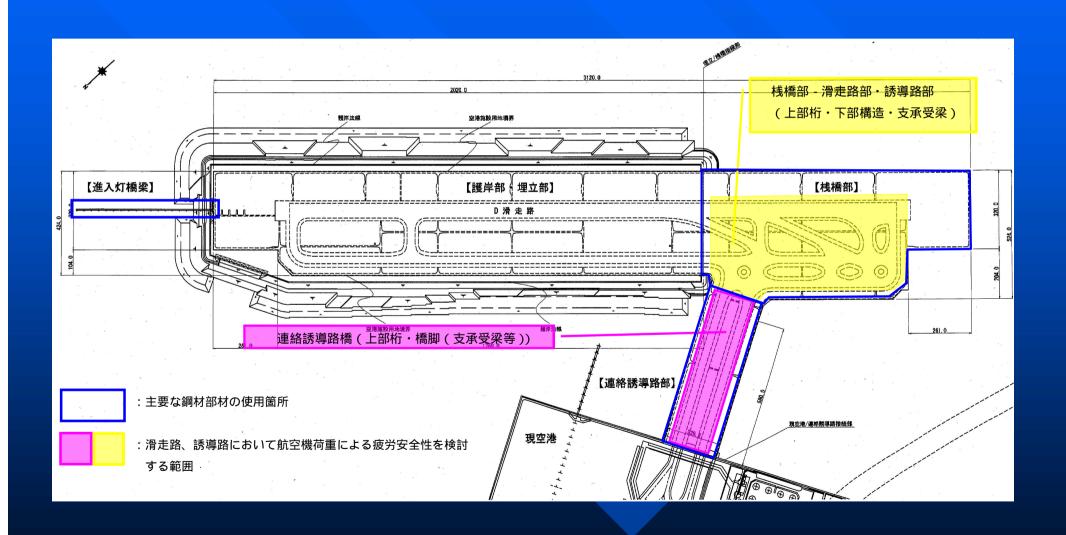

D滑走路 鋼構造部材の疲労設計と溶接管理 ~ 設計要求品質の確保に向けて ~



D滑走路建設工事共同企業体 工事管理Gr 関口太郎 ジャケット製作工区 吉田誠太郎、接続部工区 橋本光行、 連絡誘導路工区 岩崎泰 新日鉄エンジニアリング 阪上精希、高田賢一、能勢哲郎

発表内容

- 1.D滑走路における主要な鋼材使用箇所
- 2. 疲労安全性の検討方針
- 3. 設計部門における検討
- 4. 製作部門における検討
- 5. 施工に向けて

1. D滑走路における鋼材使用箇所

2. 疲労安全性の検討方針

- ・設計部門と製作 部門が連携して 検討
- ·設計要求品質を 明確化
- ·製作段階での品 質管理基準を明 確化
- ·検討成果を設計 図面、施工計画 書に反映

設計部門における 検討

> 溶接継手の設定 疲労損傷度の照査

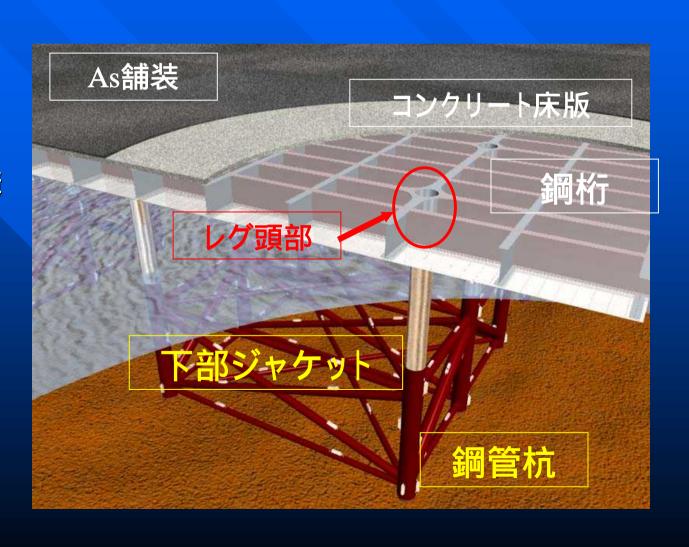
製作部門における 検討

> 製作性·溶接性 組立·溶接手順

実施設計の成果

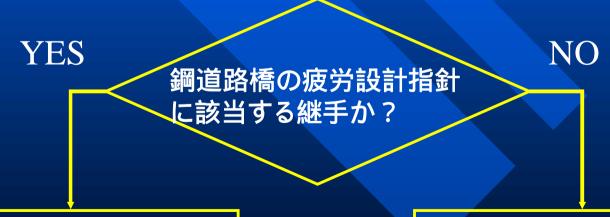
実施設計図面

施工計画書



設計図面・施工計画に基づ〈製作

分析·改善


D滑走路桟橋部の構造概要

- ・コンクリート床版を格 子桁で支持 (桁高2.0~2.5m)
- ・格子桁を下部トラス構造と鋼管杭で支持
- ·滑走路平行桁は床版 と一体化(合成桁)
- ・上部桁と下部トラスの 接合部がレグ頭部 (重要管理部位)

検討フロー

- ・上部桁「鋼道路橋の疲労設計指針」 指針に規定のない継手 ホットスポット応力による評価 ホットスポット応力はFEM解析により算出
- ・下部トラス「ジャケット工法技術マニュアル」

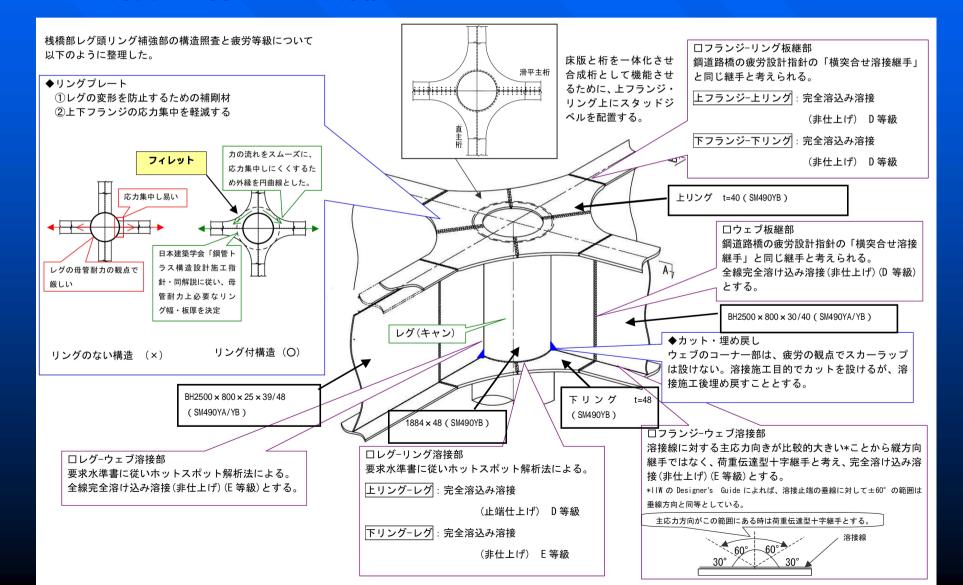
鋼道路橋の疲労設計指針 に基づ〈疲労照査 ホットスポット応力に基づく 疲労照査

■製作品質確保の前提条件

板厚、材質の選定

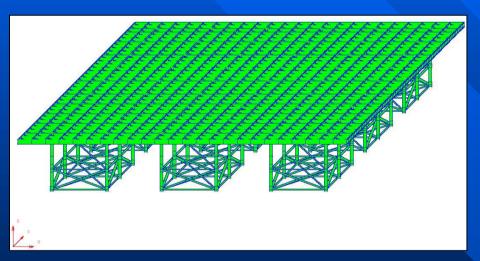
- ・極端に厚い板厚(75mm超)や高張力鋼(SM570以上)の使用をできるだけ避ける
- ・極端に大きな板厚差(24mm超)を避ける

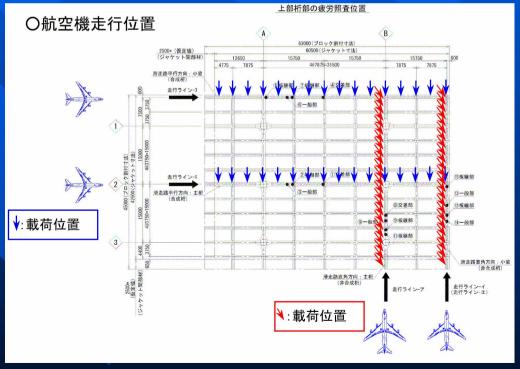
溶接スペースや組立手順に配慮


- ・スカーラップの標準サイズ一部35R 50Rに変更
- ・溶接拘束力の大きな箇所へのZ鋼(耐ラメラティア鋼) の使用確認

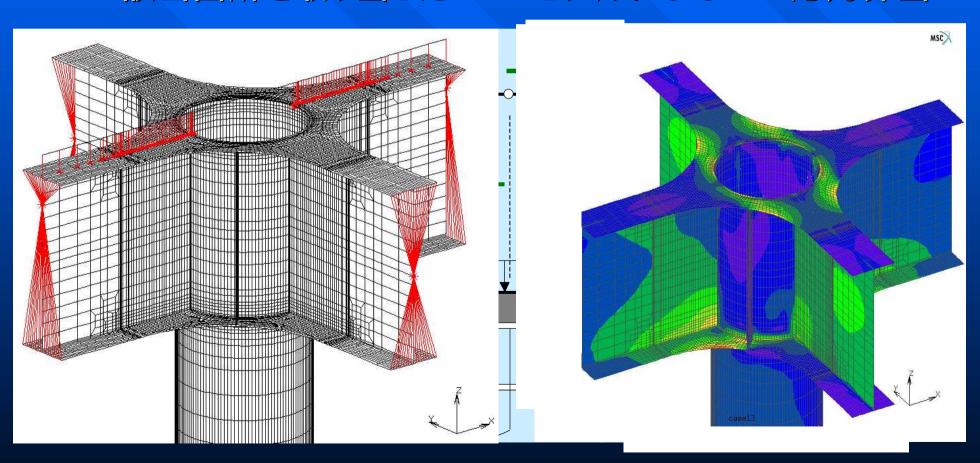
- □溶接継手の疲労等級
 - ・継手毎の疲労等級を明示 設計要求品質の明確化

		適用基準	評価応力	疲労等級
上部桁	一般部	鋼道路橋の	公称応力	D~H
		疲労設計指針		
	特殊部	要求水準書	ホットスポット	仕上げあり D
			応力	仕上げなし E
下部	鋼管	ジャケット工法	ホットスポット	AWS D1.1
トラス	格点部	技術マニュアル	応力	による等級


- □ D滑走路レグ頭部
 - ・鋼管の変更防止のためにリングプレートを配置 応力集中防止のため、フィレットを設置
 - ・疲労亀裂の始点となりやすいスカーラップは埋め戻す


■ D滑走路レグ頭部

- □ ホットスポット応力の算出方法
 - ・骨組構造解析により、発生断面力を算出


航空機位置を変更して、着目部位に生じる断面力を算出

□ ホットスポット応力の算出方法

・該当箇所を取り出したFEMモデルによるHSS応力算出

- □疲労損傷度安全係数
 - ・構造解析により、一部の部材が疲労亀裂を生じても 構造安全性を失わないことを確認
 - ·近接目視可能

	構造上クリティカル でない	構造上クリティカル
大気中	1.0	2.0
海中部	3.0	5.0
維持管理不可	5.0	10.0

■ 滑走路部(上部桁)の累積疲労損傷度 ・継手毎に100年間の累積損傷度を安全係数で除して算出

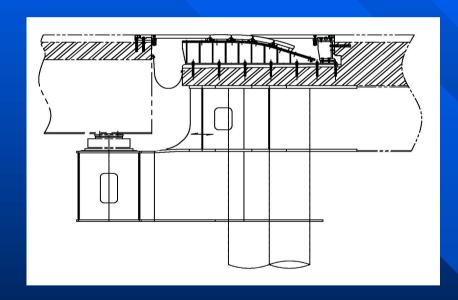
照查方法	継手No. 継手位置	等級	累積疲労損傷度							
			A380	B747	B777	B767	B737	DHC	合計	
		上側リング-上側リング	D		継手No	. の照査:	がOKであれ	ば照査を済	満たす。	
		上側リング-上フランジ	D	0.10	0.13	0.00	0.00	0.00	0.00	0.24
		上フランジ-上フランジ	D	0.11	0.11	0.11	0.00	0.00	0.00	0.33
疲労設計指針による照査		上フランジ-上フランジ	D	0.32	0.33	0.28	0.01	0.00	0.00	0.94
		下側リング-下側リング	D	継手No. の照査がOKであれば照査を満たす。						
		下側リング-下フランジ	D	0.10	0.13	0.00	0.00	0.00	0.00	0.24
		下フランジ-下フランジ	D	0.36	0.36	0.17	0.02	0.00	0.00	0.90
		上側リング-レグ	D	0.19	0.25	0.18	0.00	0.00	0.00	0.62
ホットスポット解析による照査		ウェブ-レグ	Е	0.05	0.05	0.00	0.00	0.00	0.00	0.11
		下側リング-レグ	E	0.08	0.09	0.06	0.00	0.00	0.00	0.25
疲労設計指針による照査		ウェブ-ウェブ	D	;	継手No. 、	、の照	g査がOKで	あれば照査	査を満たす。	
仮力設計指針による無直		ウェブ-ウェブ	D	;	継手No. 、	、 の _門	g査がOKで	あれば照査	≦を満たす。	

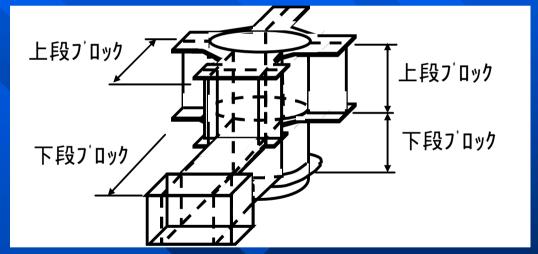
1)製作性・溶接性の検討

・目的

比較的狭隘な部位について、作業空間や適切な作業姿 勢の確保の検証

・方法

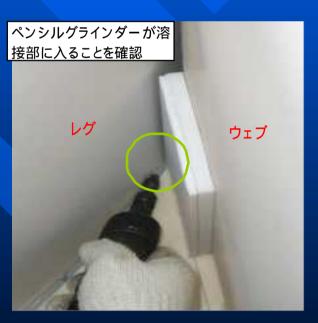

実寸大試験体等により作業空間、溶接トーチ挿入度、グラインダー挿入度等を確認


・結果

支承受け梁部は適切な作業空間が確保されており、特別な管理は不要

1)製作性・溶接性の検討

桟橋部支承受け梁部



1)製作性・溶接性の検討

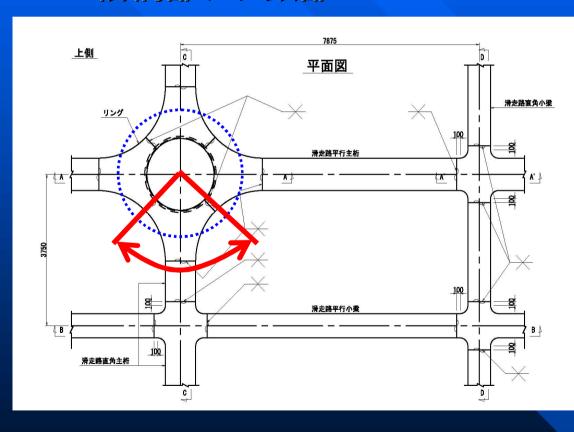
桟橋部支承受け梁部 実寸大模型による作業姿勢、電動工具の使用可否検証

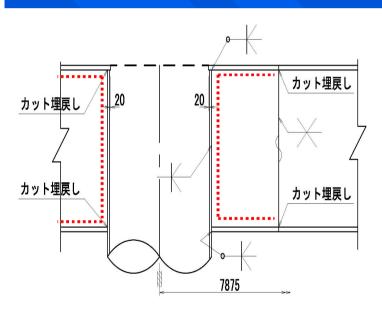
2)溶接施工性

・目的

適切な溶接条件の設定、溶接機の適用性確認

・方法


実寸大模型等により、開先形状、溶接条件、溶接姿勢・ 順序等を確認


・結果

良好な接合結果(内部/外部きず、コーナー部溶け込み、溶接外観等)が得られる施工法を選定

2)溶接施工性

桟橋部レグ頭部

2)溶接施工性

桟橋部レグ頭部

14模型による組立手順、組立精度、溶接方法の確認

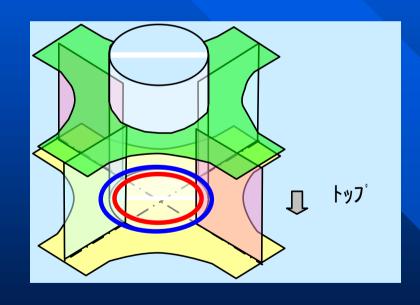
3)組立要領・溶接手順の検討

・目的

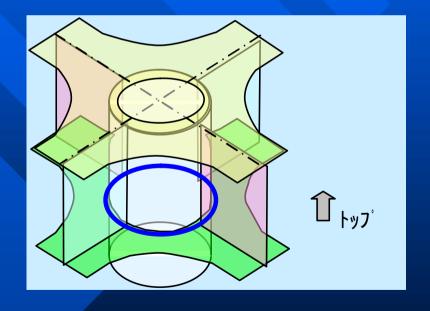
重要管理部位であるレグ頭部及び支承受け梁部の施 工法の確定

・方法

ブロック形状・重量等から、建屋内での組立・反転・溶接 手順を確認


・結果

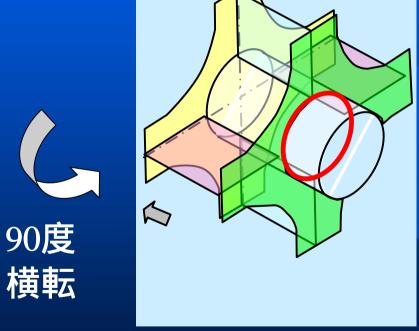
両部位について具体的な手順を決定し、施工計画書に 反映


3)組立要領・溶接手順の検討

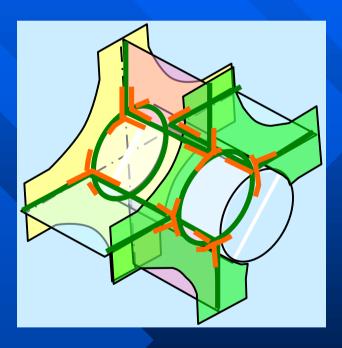
桟橋部レグ頭部

下向き・水平溶接を基本とする反転要領

180度 反転



レグ-リング(上側) 下向き溶接


レグ-リング(下側上部) 下向き溶接

3)組立要領・溶接手順の検討

桟橋部レグ頭部

途中 省略

レグ-リング(下側下部)

水平溶接

緑線 UT オレンジ線 MT(3線交差部)

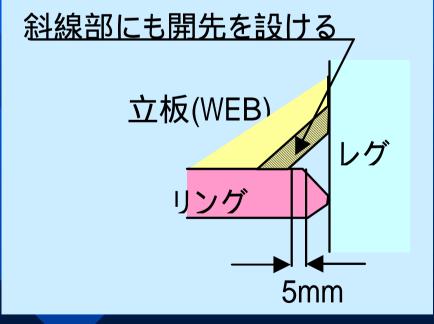
4)溶接施工法の検討

・目的

溶接継手毎に、製作手順をふまえて適用基準との整合性を 確認

・方法

組立精度、溶接方法、溶接姿勢、開先形状等を検討


・結果

ルートギャップ、入熱量が基準を満たさない継手を抽出し、 溶接施工試験を実施

重点管理部位である3線交差部の溶接手順を確定

- 4)溶接施工法の検討
 - 3線交差部の溶接手順
 - ・・・類似形状である鋼製橋脚隅角部の施工法を適用

5)施工法の事前確認試験

溶接施工試験

・目的

基準に適合しない溶接法を採用する継手に対して、要求品 質が確保できるか検証

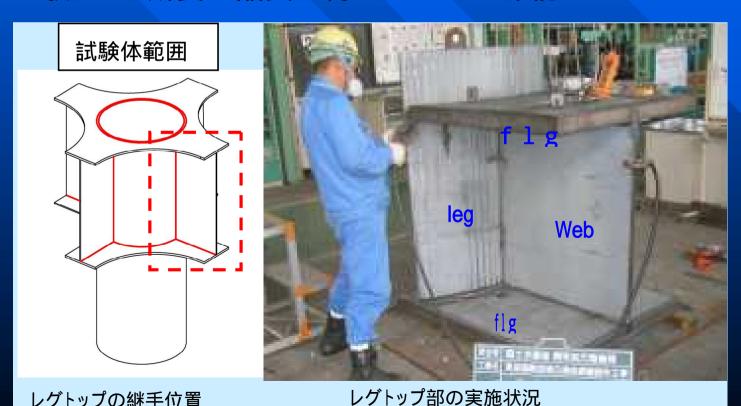
・方法

道路橋示方書に基づき実施

・結果

採用する施工法で要求品質を確保できることを確認 (継続検討中)

5)施工法の事前確認試験


溶接施工試験

	溶接施工試験の実施条件	主な実施箇所
a)	SM570、SM570W、SM520及び SMA490Wにおいて、1パスの入熱量が 7,000J/mmを超える場合	·BHフランジ-ウェブ首溶接
b)	SM490、SM490Yにおいて、1パスの入 熱量が10,000J/mmを超える場合	·BHフランジ-ウェブ首溶接
f)	採用する溶接施工法の施工実績がない 場合	・桁交差部ウェブ-ウェブ溶接 ・上下部ジャケット一体化部
g)	その他(道路橋示方書の試験実施項目 には該当しない)	・レグ頭部リング-レグ溶接部 ・下部ジャケット鋼管格点部

5)施工法の事前確認試験

溶接施工試験

実施工と同じ溶接条件で施工し、マクロ試験、機械試験により所要の品質が得られることを確認

5)施工法の事前確認試験

超音波自動探傷試験(AUT)性能確認試験

·目的

本工事に適用する機種の性能を確認するために実施

・方法

人為的にきずを設けた試験体への探傷を実施し、既往の 試験方法と比較

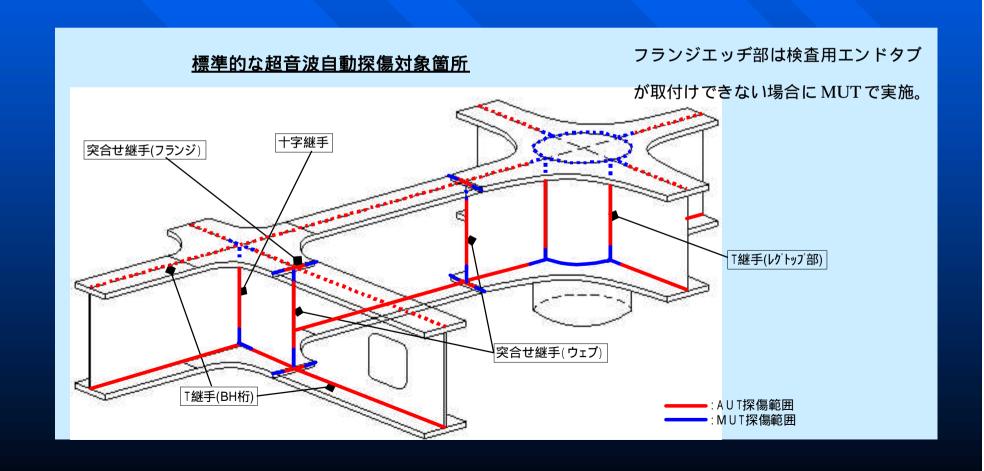
・結果

適用可能なAUT機種と適用範囲を決定

5)施工法の事前確認試験

AUT・・・探触子を自動的に走査し、探傷部を連続的に探傷する方法 所定のデータを自動で収録し、結果を探傷画像として表示可能(JIS)

探傷方法等により複数機種あり



5)施工法の事前確認試験

AUTの適用箇所・・・探傷可能な箇所はAUTを使用

5)施工法の事前確認試験

止端処理方法

・目的

溶接止端仕上げが必要な継手に対して、採用予定の施工 法が要求品質を満足できるか確認

・方法

グラインダー法、超音波打撃仕上げ(UIT)法を対象に、実 寸大模型により確認

・結果

両方法とも、良好な仕上げ形状が得られることを確認

5)施工法の事前確認試験

止端処理方法

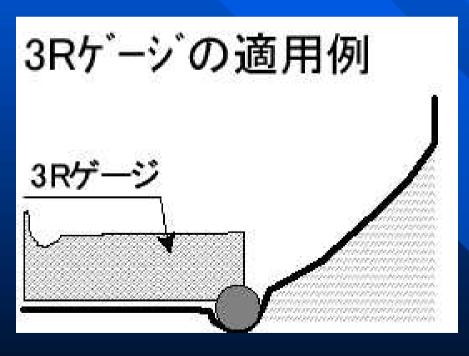
疲労亀裂の始点となりやすい溶接止端部の表面形状を滑らかに 処理、アンダーカットを除去

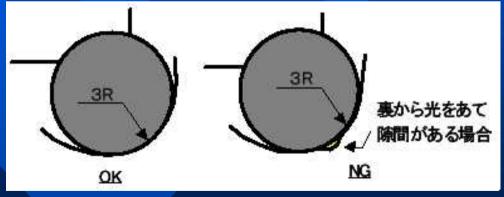
止端部の	施工方法	形状·外観管理要領
形状区分		(鋼道路橋の疲労設計指針)
なめらかな止端	As-weld	・アンダーカットがないこと
を有する継手	ガスシールドアーク溶接	·止端部が3R以上の滑らか
	TIG溶接等	な形状であること
止端仕上げした 継手	グラインダー法	
War —	UIT法	・仕上げ残しがないこと
		・仕上げ深さが0.5mm以下

5)施工法の事前確認試験

止端処理方法

実寸大模型により、所定の品質が確保できることを確認


グラインダー法


UIT法

5)施工法の事前確認試験

止端処理方法

処理部の検査要領を決定(下図は形状の確認要領)

3. 施工に向けて

- ■施工段階での実施項目
 - ・溶接施工試験の継続実施 (主に下部トラス部)
 - ·QC工程表に基づく自主検査の確実な実施 工程内確認項目・適用基準・確認方法・頻度・記録方法の明確化・ 実施者・承認者の明確化
 - ・検査記録の分析に基づく施工要領の改善 不適合内容の明確化、非破壊検査の合格率 不適合原因の追究、対策
 - ・品質・出来型記録のトレーサビリティ 検査漏れの防止、検査結果の記録 維持管理業務への引継ぎ