D滑走路 滑走路舗装(桟橋部)の設計

~ プレキャスト床版上の特性を考慮した舗装構造 ~

JV 工務·設計監理Gr 本島禎二 大林組 古屋弘

1. 設計概要(設計フロー)

要求項目

航空灯火設置要件

路面性状

- ・耐わだち掘れ
- ・排水性の確保
- ・すべり抵抗

疲労耐久性 層間剥離 床版構造の保護 設計手順

舗装総厚の設定

舗装材料の設定

舗装断面の設定

構造照査

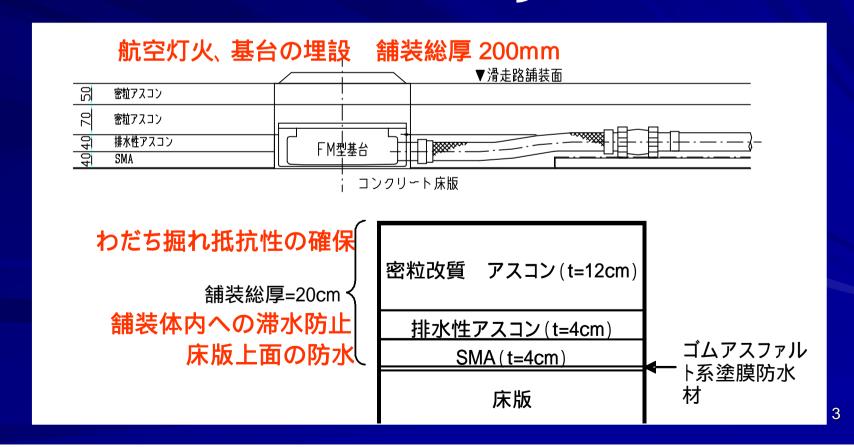
疲労耐久性

剥離抵抗性

検討方法

管路径 (埋設深さ)にて決定

- ・標準舗装構成の設定
- ・各バインダーの室内試験: 動的曲げ試験,レジリエントモジュラス試験等
- ·滞水防止対策

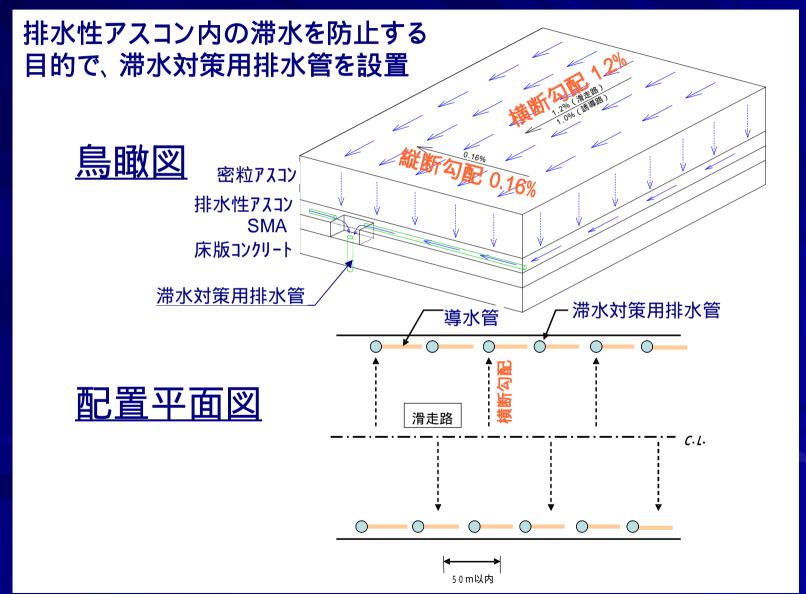

解析定数および破壊基準の設定

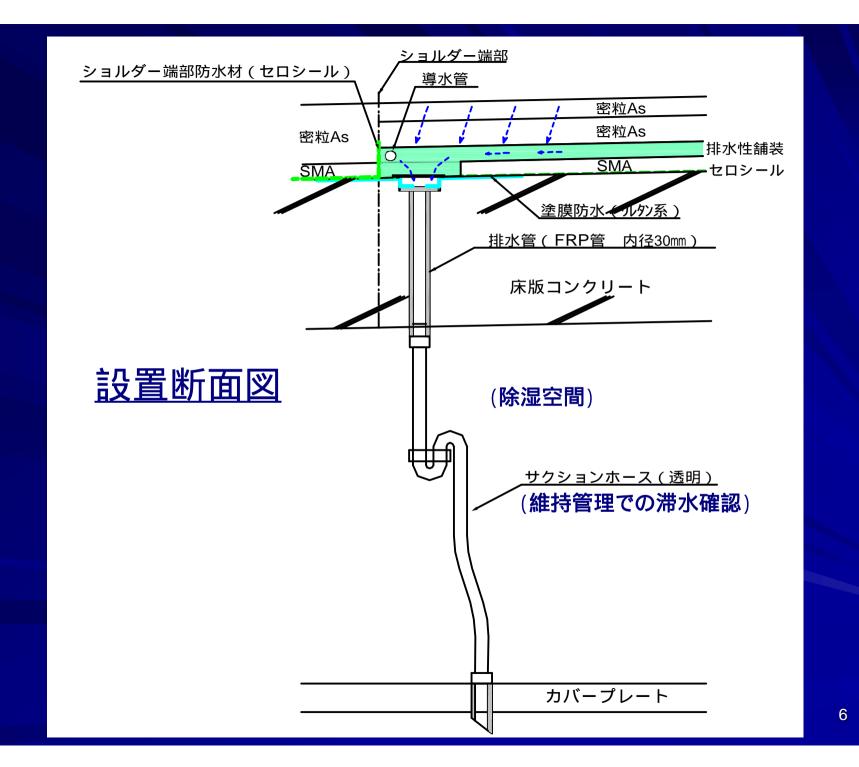
- ·3次元FEMによるひずみ算定
- ·表層、SMA層の疲労照査
- ·3次元FEMによる層間せん断応力算定

2. 舗装構成 (滑走路、誘導路)

- ・航空灯火の舗装内への設置
- ・わだち掘れ抵抗性の確保
- ・舗装体内への滞水防止
- ・床版上面の防水

の要件より設定


3. 舗装材料



桟橋部舗装に使用するアスファルト混合物

材料(混合物)	アスファルトの種類	目的	目標性能	
密粒アスコン	改質 型アスファル ト	わだち掘れ抵 抗性	DS(動的安定度) 2,500回/mm	
排水性アスコン	高粘度改質アスファ ルト	浸透水の排水	空隙率20%	
砕石マスチックア スファルト(SMA)	鋼床版用改質アス ファルト	防水性 たわみ追従性	透水係数 1×10 ⁻⁷ cm/sec以下	
防水材	ゴムアスファルト系 塗膜防水材	防水性	SMAと一体で防水 性能を確保	

4. 舗装内の滞水防止対策

5. 構造照查

疲労耐久性の照査の手順

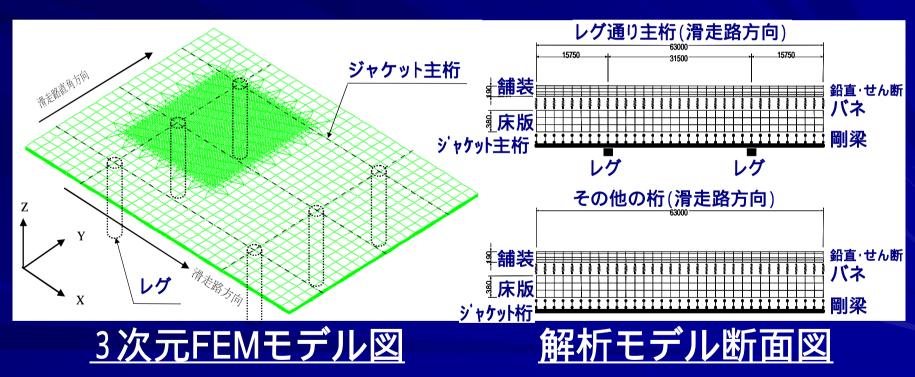
予備解析

予備解析では、本解析での解析ケース数を絞り込む目的で、以下の傾向を把握するため解析を実施。

- ·最大主ひずみの発生ポイントと航空機載荷パターン(航空機主脚とレグ 等基盤構造との相対位置関係)
- ・脚荷重比と発生ひずみ比の関係、アスコン温度と発生ひずみ比の関係

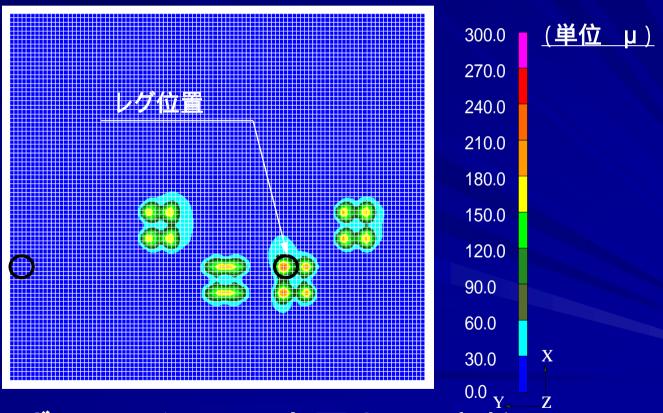
本解析

本解析は、各航空機載荷時の表層およびSMAの最大主ひずみを算定し、 予備解析結果と合わせて、疲労照査に必要となる発生ひずみを算出。


疲労照香

本解析で得られた機材·離着陸別の最大発生ひずみを用いて累積疲労度 を算定する。

疲労度算定期間は、維持管理計画と整合させ、表層(密粒アスコン)は13年、 SMAは30年とする。


5.1 FEM解析モデル

ジャケット桟橋構造 + 床版で構成される複雑な構造上の舗装を評価することが可能な3次元弾性FEMモデル(解析コードABAQUS)により、航空機荷重載荷時の舗装内に発生するひずみを算定した。

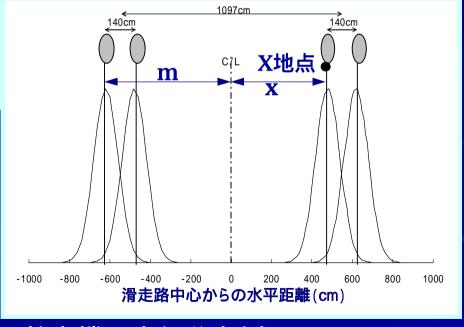
5.2 FEM解析結果

予備解析における舗装内ひずみの解析結果の一例(B747-400)を示す。 ひずみは、上面(表層上面)および下面(SMA下面)で算出。(要求水準書) 最大ひずみはBG(バックギア)車輪がレグ直上の場合で、車輪直下で発生

舗装ひずみコンター図:表層上面(密粒アスコン)

5.3 疲労耐久性の照査

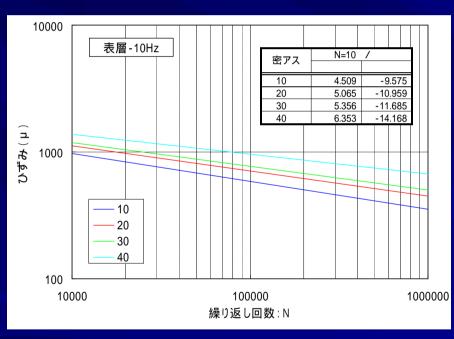
パス/カバレージ率 P/C(x) の算出

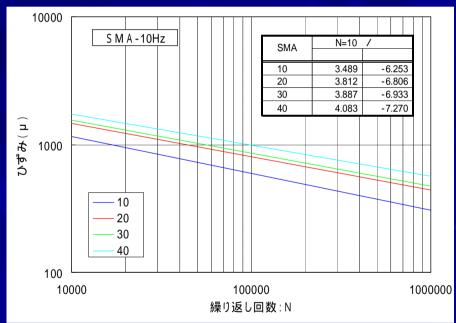

$$P/C(x) = \frac{1}{\sum_{i=1}^{n} Ci(x) \times Wt}$$

Ci(x) : X 地点における正規確率密度関数値

$$Ci(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-m)^2}{2\sigma^2}}$$

航空機の走行分布(標準偏差)


	滑走路 離陸時	滑走路 着陸時	平行 誘導路	高速脱出 誘導路
A380、B747、 B777	0.90m	1.70m	0.60m	0.70m
B767	0.70m	1.10m	0.50m	0.60m



x 地点における疲労度 DF(x) の算出

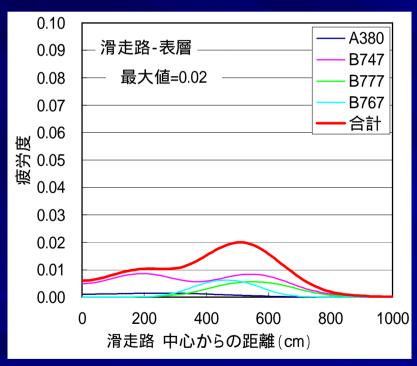
疲労度 : DF(x) = 航空機の交通量 許容載荷回数 ×P/C(x)

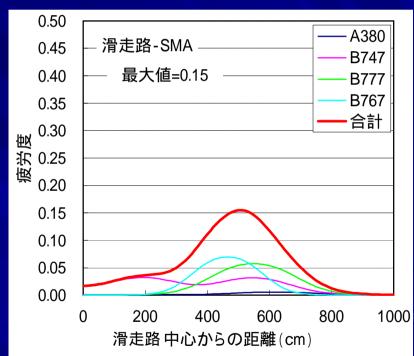
許容載荷回数は、以下の破壊基準線より、発生ひずみから設定

表層(密粒アスコン)

SMA

破壞基準線(滑走路部)


設計交通量:表層(13年)、SMA(30年)


区分	機種	年間便数		全交通量(表層)		全交通量(SMA)	
		離陸	着陸	離陸	着陸	離陸	着陸
国際線	A380-800I	1,000		13,000		30,000	
	B747-400	2,000	1,000	26,000	13,000	60,000	30,000
	B777-200ER	1,000		13,000		30,000	
	B767-300ER	3,000	1,000	39,000	13,000	90,000	30,000
国内線	A380-800	5,000	2,000	65,000	26,000	150,000	60,000
	B747-400D	15,000	4,000	195,000	52,000	450,000	120,000
	B777-200	23,000	7,000	299,000	91,000	690,000	210,000
	B767-300	27,000	8,000	351,000	104,000	810,000	240,000

累積疲労度の算定

疲労度DF(x)を10cmピッチで繰返し、全機種および温度に対して 疲労度を算出した合計が累積疲労度(下図を参照)

累積疲労度 1.0 であり、疲労耐久性に関して安全である。

累積疲労度の算定結果(滑走路部)

ご静聴ありがとうございました。